soxspipe Documentation
Release v0.10.2

Dave Young

2024

CONTENTS

1 Installation 3
2 How to cite soxspipe 5
2.1 Quickstart Guide e e e e e e 5
21,1 Install e e e e e e e e e e e e e e e 5

2.1.2 DemoData e e e e e e e e e e 6

2.1.3 Preparing the Data-Reduction Workspace 6

2.14 ReducetheData. e e e 6

2.2 LOZEING . . v o e e e e e e e e e e e e e 7
2.3 DataReduction SessSiOns i i it e e e e e e e e e e e e e 7
24 redUCE . . i v i e e e e e e e e e e e e e e e 8
2.5 A Primer on SOXS Observation Modes e 8
2.6 RECIPES o o i 8
2.6.1 Standard Calibrations e e e e e e e e e e e e 9
2.6.1.1 SOXS_MDIasS . . . v i i e e e e e e e e e e e e e e e e e 9

2.6.1.2 soxs_mdark e e e e e e e e e e e e e e e e e e e 13

2.6.1.3 soxs_mflat e e e e 17

2.6.2 Dispersion and Spatial Solutions L 29
2.62.1 soxs_disp_sSolution it e e e e 29

2.62.2 SOXS_0Order_Centres v v v vttt e e e e e e e e e e e 37

2.6.23 soxs_spatial_solution-PLANNED. 42

2.6.24 soxs_straighten-PLANNED, 47

2.7 UGHHHES o o o e s 48
2.7.1 clip_and_stack i e e e e e 48

272 create_dispersion_Map v vttt e e e e e e e e e e 50
2721 2DImage Map o ot e e e e e e e e 53

2773 create_noise_map-PLANNED 59

2774 detect_contdnuum. o i i i i i e e e e e e 60

275 detect_order_edges—-COMPLETED 64

276 detector_1oOKUDP .« . v v v i i it e e e e e e e e e e e e e e e e e 66

27777 f1lenamer i i i e 66

2.7.8 keywWord_l1OOKUD . . v v v v it i e 66

2779 prepare_frames e e e e e e e e 67
2710 set_of Files . . . i i i i e e e e e e 71
2.7.11 subtract_background i e e e e e e e e e e e 71
2.7.12 detrend-SEMI-COMPLETED i 76

2.8 Files e e e e e 77
2.8.1 ProductFiles e e e e e 77

2.8.2 Static Calibration Files e 77
2.82.1 PinholeMap 77

29

2.10

2.11

2.8.2.2 Detector Parameters e e e e e e e e e e 77

2.8.2.3 Spectral FormatTable e 77
2.8.3 Intermediate Files e e e e 77

2.83.1 MasterBias e e e e e e e e e 77

2.83.2 MasterDark e e e e e 77

2.8.33 Prepared Frame 78

2.83.4 Dispersion Map e e e e e e e e e e e e 78

2.83.5 OrderTable e e 78
Release Notes o e e e e e e e e e e e e e e e e 78
29.1 v0.10.2 - April 23,2024 . . . L e e e e e 78
29.2 v0.10.1-April 11,2024 L e 79
2.93 v0.10.0 - February 20, 2024 e e e e e e e e e e 79
2.9.4 v0.9.9 -January 24,2024 L e e e e e e e 79
295 v0.9.8-January 19,2024 L e e e 79
296 v0.9.7-December 7,2023 e e 80
297 v0.94 -December 5,2023 e e 80
2.9.8 v0.9.2-November 29,2023 e e e e e e e e e e 80
2.9.9 v0.9.0-0October 11,2023 e e e e e e e e e e 81
2.9.10 v0.8.0-May 18,2023 e e e e e e e 82
2.9.11 v0.7.2-March 3,2023 e e e e e e e e 82
2.9.12 v0.7.1 - November 4, 2022 e e e e 82
29.13 v0.6.2-April 13,2022 e 83
2.9.14 v0.6.1-April 11,2022 e e e e e e e e e e 83
2.9.15 v0.6.0-April 10,2022 e e e e e e e 83
29.16 v0.5.1-September 29,2021 e 84
2.9.17 v0.5.0-June 10,2021 e e e e e e e e e 84
2.9.18 v0.4.1-September 15,2020 L. e e 85
2.9.19 v0.4.0 - September 3,2020 e e e e e e e e e e e 85
2.9.20 v0.3.1-August25,2020 e e e e e e e e e 86
2921 v0.3.0-August 18,2020 86
2.9.22 v0.2.0 - February 27,2020 L e e e e e 87
Modules e e e e e e e e 87
2.10.1 commonutils (module) e e e e e 87
2.10.2 recipes (module) e e e e e e e e e e 88
2.10.3 polynomials (module) e e e e e e 88
2.10.4 toolkit (module) e e e e e e e e e e e e 89
2.10.5 utKit (module) e e e e e e e e e e e 90
ClasSeS . v v v v e e e e e e e e e e e e e 90
2.11.1 create_dispersion_map (class) i e e e e e e e e e e 91
2.11.2 data_organiser (class) o o e e e e e e e e e e 95
2.11.3 detect_continuum (class) o i i e e e e e e e e e e e e e e e e 100
2.11.4 detect_order_edges (class) e e e 103
2.11.5 detector_lookup (class) e e e e e 107
2.11.6 flux_calibration (class) o e e e e e e e 108
2.11.7 horne_extraction (class) o i i e e e e e e e e e e e 109
2.11.8 keyword_lookup (class) e 110
2.11.9 chebyshev_order_wavelength_polynomials (class) 112
2.11.10 chebyshev_order_xy_polynomials (class) 112
2.11.11 chebyshev_xy_polynomial (class) i 113
2.11.12 reducer (class) o e e e e e e e e e e e e e e e e 114
2.11.13 response_function (class) o o e e e e e e e e e 116
2.11.14 subtract_background (class) e e e 117
2.11.15 subtract_sky (class) o e e e e e e e 118
2.11.16 MaxFilter (class) o e e e e e e e 124

2.12

2.11.17
2.11.18
2.11.19
2.11.20
2.11.21
2.11.22
2.11.23
2.11.24

soxs_disp_solution (class) e e e
soxs_mbias (class) e e e e e e e e e e e e e e e e e
soxs_mdark (class) e e e e e e e e e
soxs_mflat (class) e e e e e e e e e e e e
soxs_order_centres (class) e e e e e e e e e
soxs_spatial_solution (class) L e
SOXS_Stare (Class) o e e e e e e e e e e e e e e e e e
soxs_straighten (class) e e e e e e

Functions e e e e e e

2.12.1
2.12.2
2.12.3
2.12.4
2.12.5
2.12.6
2.12.7
2.12.8
2.12.9
2.12.10
2.12.11
2.12.12
2.12.13
2.12.14
2.12.15
2.12.16

dispersion_map_to_pixel_arrays (function) oo
filenamer (function) e e e e e e e e e e
getpackagepath (function) e
add_recipe_logger (function) e e e e e e e
create_dispersion_solution_grid_lines_for_plot (function)
cut_image_slice (function) e e e e e
generic_quality_checks (function) L
get_calibration_lamp (function) e
get_calibrations_path (function) e e e e
predict_product_path (function) e
quicklook_image (function) e
read_spectral_format (function)
spectroscopic_image_quality_checks (function)o
twoD_disp_map_image_to_dataframe (function),
unpack_order_table (function) e e e e e e
uncompress (fURCHION) e e e e e e e e

213 A-ZIndexX e e e e e

3 Acknowledgements

Python Module Index

Index

175

177

179

soxspipe Documentation, Release v0.10.2

The data-reduction pipeline for the SOXS instrument (a python package with command-line tools).

Documentation for soxspipe is hosted by Read the Docs (development version and master version). The code lives on
github. Please report any issues you find here.

CONTENTS 1

https://zenodo.org/doi/10.5281/zenodo.8038264
https://pypi.org/project/soxspipe/
https://pypi.org/project/soxspipe/
https://anaconda.org/conda-forge/soxspipe
https://pepy.tech/project/soxspipe
https://github.com/thespacedoctor/soxspipe
https://soxs-eso-data.org/ci/blue/organizations/jenkins/soxspipe/activity?branch=master
https://soxs-eso-data.org/ci/blue/organizations/jenkins/soxspipe/activity?branch=develop
https://raw.githack.com/thespacedoctor/soxspipe/master/htmlcov/index.html
https://soxspipe.readthedocs.io/en/master/
https://soxspipe.readthedocs.io/en/master/
https://soxspipe.readthedocs.io/en/develop/
https://soxspipe.readthedocs.io/en/master/
https://github.com/thespacedoctor/soxspipe
https://github.com/thespacedoctor/soxspipe/issues

soxspipe Documentation, Release v0.10.2

2 CONTENTS

CHAPTER
ONE

INSTALLATION

The best way to install or upgrade soxspipe is to use conda to install the package in its own isolated environment, as
shown here:

conda create -n soxspipe python=3.9 soxspipe -c conda-forge
conda activate soxspipe

If you have previously installed soxspipe, a warning will be issued stating that a conda environment already exists;
select ‘y’ when asked to remove the existing environment.

To check installation was successful run soxspipe -v. This should return the version number of the install.

soxspipe Documentation, Release v0.10.2

4 Chapter 1. Installation

CHAPTER
TWO

HOW TO CITE SOXSPIPE

If you use soxspipe in your work, please cite using the following BibTeX entry:

@software{Young_ soxspipe,
author = {Young, David R.},
doi = {10.5281/zenodo.8038264},
license = {GPL-3.0-only},
title =,
url = {https://zenodo.org/doi/10.5281/zenodo.8038264}

2.1 Quickstart Guide

Warning: This quickstart guide is subject to (much) change during the development of the pipeline. New features
and ways of operating the pipeline are still being added. Current data taken in stare mode can be reduced to the
point of sky subtraction.

2.1.1 Install

The best way to install soxspipe is to use conda and install the package in its own isolated environment (using either
Anaconda or Minicoda), as shown here:

conda create -n soxspipe python=3.9 soxspipe -c conda-forge
conda activate soxspipe

If you have previously installed soxspipe, a warning will be issued stating that a conda environment already exists;
select y when asked to remove the existing environment. This has proven to be the cleanest way to upgrade soxspipe.

To check installation was successful run soxspipe -v. This should return the version number of the installation.

https://docs.anaconda.com/anaconda/install/index.html
https://docs.conda.io/en/latest/miniconda.html

soxspipe Documentation, Release v0.10.2

2.1.2 Demo Data

The demo XShooter data (stare-mode) is of the X-ray binary SAX J1808.4-3658 taken during a 2019 outburst. You
can download and unpack the data with the following commands:

curl -L "https://www.dropbox.com/s/t3adwc86bcwonkj/soxspipe-quickstart-demo-lite.tgz?
—dl=1" > soxspipe—quickstart-demo.tgz
tar -xzvf soxspipe-quickstart-demo.tgz

You may also retrieve the raw data directly from the ESO archive with the following parameters:

RA = 18 08 27.54

Dec = -36 58 44.3

Night = 2019 08 30
Spectroscopy = XSHOOTER/VLT
Science

2.1.3 Preparing the Data-Reduction Workspace

Now you have a sample data set to work with, it is time to prepare the soxspipe-quickstart-demo workspace.
Change into the soxspipe-quickstart—-demo directory and run the soxspipe prep command:

cd soxspipe—quickstart-demo
soxspipe prep

Once the workspace has been prepared, you should find it contains the following files and folders:
* misc/: alost-and-found archive of non-fits files
e raw_frames/: all raw-frames to be reduced
* sessions/: directory of data-reduction sessions
* sof/: the set-of-files (sof) files required for each reduction step
* soxspipe.db: asqlite database needed by the data-organiser, please do not delete

soxspipe reduces data within a reduction session and an initial base session is automatically created when
running the prep command.

2.1.4 Reduce the Data

In most use case, you will want to reduce all of the raw frames contained within your workspace. To do this run the
command:

soxspipe reduce all

6 Chapter 2. How to cite soxspipe

http://archive.eso.org/eso/eso_archive_main.html
./sessions.html

soxspipe Documentation, Release v0.10.2

2.2 Logging

When running a recipe, soxspipe writes informative logs to the terminal (stdout), allowing the user to keep track of
the reduction progress in real time. For the sake of provenance, this same information is written to a log file adjacent
to the recipe’s product file(s).

¥ soxs-mdark » B 2019.08.23T11.25.03.8539_NIR_MDARK_205PTO fits

B 2019.08.23T11.25.03.8539_NIR_MDARK_205PT0.log

If the recipe happens to fail, a separate error log is written to the directory the product file should have been written to
had the recipe succeeded. Error logs are named with a ”_ERROR.log” suffix.

™ soxs-mdark 5 B 2019.08.23T11.25.03.8539_NIR_MDARK_205PTO.fits

B 2019.08.23T11.25.03.8539_NIR_MDARK_205PT0.log

2.3 Data Reduction Sessions

soxspipe reduces data within a ‘reduction session’. These sessions are designed to be self-contained and isolated from
other sessions, allowing a user to reduce the same set of raw data with multiple different pipeline settings. When a
workspace is first prepared (using the soxspipe prep command), an initial base session is automatically created.
Sessions are stored in the sessions directory of the workspace and contain their own settings file, products and QC
directories. soxspipe will remember and use the latest session you were working with unless you create a new session
or switch to another one.

To see which reduction session you are working within and all other sessions available, run the command:

’soxspipe session 1ls

To create a new session, run the command:

’soxspipe session new

The new session will be named with the date-time stamp of its creation date. Alternatively, you can also supply a
memorable name for the session. The name can be up to 16 characters long and use alpha-numeric characters, - or _.

soxspipe session new my_supernova

Or to switch to an existing session, run the command:

’soxspipe session <sessionId>

For user convenience, when you switch to a new session, the symbolic links found within the workspace root folder are
automatically switched to point to the current session assets (products, gc, sof, soxspipe.yaml,soxspipe.
dbetc). If yourun 1s —1rt within your workspace root directory you will see these symlinks reported:

products -> ./sessions/base/products

gc -> ./sessions/base/qc

soxspipe.db -> ./sessions/base/soxspipe.db
soxspipe.yaml -> ./sessions/base/soxspipe.yaml
sof -> ./sessions/base/sof

2.2. Logging 7

https://live.staticflickr.com/65535/53246177840_c710373c18_o.png
https://live.staticflickr.com/65535/53246182095_dae0648eb0_o.png

soxspipe Documentation, Release v0.10.2

2.4 reduce

In the simplest use case, you will want to reduce all of the raw frames contained within your workspace. To do this,
first change directory to the base of your workspace, and then run the commands:

soxspipe prep .
soxspipe reduce all .

soxspipe

will now attempt to reduce all of the data in your workspace.

2.5 A Primer on SOXS Observation Modes

The glow of thermal emission from the earth’s atmosphere, and even the telescope itself, start to dominate photon
counts at NIR wavelengths, seriously contaminating signal from target sources. This thermal emission glow is typically
dubbed ‘sky background’ (despite the fact it originates in the foreground of the target source).

The sole reason SOXS has multiple observation modes is to provide astronomers with flexibility and a choice of
methods they can employ to attempt to isolate and remove the noise generated by the sky-background from their
science frames.

The 3 main observation modes are (click links for more detail):

1. Stare mode where the on-source sky-background is modelled, fitted and removed with software. Although
removal of the background is not as accurate as the other observation modes, the time lost in overheads is lower.

2. Nodding mode employs an observational technique to measure the sky-background of an empty patch of sky
near in time and spatially close to the source. This spectral measurement of the sky-background flux is simply
removed from the on-source spectrum. Although generating more overhead time than stare-mode, unlike offset-
mode, this technique allows for source and sky to be observed on the same frames.

3. Offset mode employs the same basic ‘observe and subtract’ method to remove the sky-background as nod mode,
but is typically favoured for extended sources where it is not possible to observe a blank patch of sky and the
source within the same 11 arcsec slit. As sky and source are observed in separate frames this observation mode
has the highest fraction of time lost to overheads.

2.6 Recipes

SOXSPIPE borrows the informative concept of "recipes’ employed by ESO’s data reduction pipelines to define the
modular components of the pipeline. These recipes can be strung together to create an end-to-end workflow that takes
as input the raw and calibration frames from the instrument and telescope and processes them all the way through to
fully reduced, calibrated, ESO Phase III compliant science products.

8 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

2.6.1 Standard Calibrations

2.6.1.1 soxs_mbias

A zero-second exposure will contain only read-noise and ~half of pixels within this Gaussian distribution centred
around zero count will always contain negative flux. To avoid negative counts an offset bias voltage is applied at the
amplifier stage so that even when no photons are detected the A/D converter will always register a positive value. This
bias-voltage offset must be accounted for in the data reduction process.

The purpose of the soxs_mbias recipe is to provide a master-bias frame that can be subtracted from sci-
ence/calibration frames to remove the contribution of pixel counts resulting from the bias-voltage.

Input
Data Content Related OB
Type
images raw bias frames (UV-VIS/AC exposures with exp- | SOXS_img_cal_Bias,
time = 0) SOXS_gen_cal_VISBias
Parameters
Parameter | Description Type| Entry Related Util
Point
-clipping- number of from the median frame flux beyond which pixel is | float| settings | clip_and_st
sigma added to the bad-pixel mask file
-iteration- number of sigma-clipping iterations to perform when added | int | settings | clip_and_sf
count pixels to the bad-pixel mask file
-clipping- number of deviations from the median pixel flux beyond which | float | settings | clip_ and_ st
sigma pixel is excluded from stack file
-clipping- number of -clipping iterations to perform before stacking float | settings | clip_and_st
iterations file

2.6. Recipes

ack

ack

ack

ack

../_api/soxspipe.recipes.soxs_mbias.html
../files/master_bias.html
../utils/clip_and_stack.html
../utils/clip_and_stack.html
../utils/clip_and_stack.html
../utils/clip_and_stack.html

soxspipe Documentation, Release v0.10.2

Method

The purpose of the soxs_mbias recipe is to stack raw bias-frames together (using the c1ip_and_stack utility)
into master-bias frames and in the process clipping rogue pixels from the individual raw frames and reducing the
read-noise contribution.

10 Chapter 2. How to cite soxspipe

../_api/soxspipe.recipes.soxs_mbias.html
../utils/clip_and_stack.html
../files/master_bias.html

soxspipe Documentation, Release v0.10.2

soxspipe mbias <inputFrames>

¢+ raw bias frames

Are input frames those
expected for this receipe and of a
single setup (arm, binning

exit with error

print a summary of the raw input
frames for the user to inspect

|

prepare the individual raw frames using
the prepare_frames() method - trim
overscan, add default bad-pixel map ¢+ bad pixel map
extension, generate and add error map
extension

|

for each raw bias frame, calculate the
sigma-clipped mean flux level (mean
bias level). The combined mean of these
mean flux levels is assumed to be the
master bias level.

|

for each frame, subtract its mean flux
level to leave only the noise generated
from readout.

|

call to clip_and_stack() method to sigma-
clip and mean combine these noise

frames. Store the image masks generated
from this clip_and_stack() method.

|

add the master bias level back into this
combined noise frame to form the
master bias frame.

|

associate the image mask generated
from the stacked noise map with the
master bias frame.

write the combined, master bias

frame to disk master bias frame

2.6. Recipes 1

soxspipe Documentation, Release v0.10.2

Output
Data Type | Content
image Master bias frame (frame containing typical bias-voltage applied to the detector)
QC Metrics
Metric | Description
Recipe API

class soxs_mbias (log, settings=False, inputFrames=[], verbose=False, overwrite=False)

The soxs_mbias recipe is used to generate a master-bias frame from a set of input raw bias frames. The
recipe is used only for the UV-VIS arm as NIR frames have bias (and dark current) removed by subtracting an
off-frame of equal expsoure length.

Key Arguments
* log - logger
* settings — the settings dictionary
* inputFrames —input fits frames. Can be a directory, a set-of-files (SOF) file or a list of fits frame paths.
* verbose — verbose. True or False. Default False

e overwrite — overwrite the prodcut file if it already exists. Default False

Usage
from soxspipe.recipes import soxs_mbias
mbiasFrame = soxs_mbias (

log=1log,

settings=settings,
inputFrames=filelist
) .produce_product ()

Todo:

¢ add a tutorial about soxs_mbias to documentation

verify input_frames ()
verify the input frame match those required by the soxs_mbias recipe

If the fits files conform to required input for the recipe everything will pass silently, otherwise an exception
shall be raised.

produce_product ()
generate a master bias frame

Return:

* productPath — the path to the master bias frame

12

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

gc_bias_structure (combined_bias_mean)

calculate the structure of the bias

Key Arguments:

e combined_bias_mean — the mbias frame

Return:
* structx — slope of BIAS in X direction
* structx —slope of BIAS in Y direction

Usage:

structx, structy = self.qgc_bias_structure (combined_bias_mean)

gc_periodic_pattern_noise (frames)
calculate the periodic pattern noise based on the raw input bias frames

A 2D FFT is applied to each of the raw bias frames and the standard deviation and median absolute
deviation calcualted for each result. The maximum std/mad is then added as the ppnmax QC in the master

bias frame header.

Key Arguments:

* frames — the raw bias frames (imageFileCollection)

Return:

’— TTppnmax”

Usage:

’self.qc_periodic_pattern_noise(frames:self.inputFrames)

2.6.1.2 soxs_mdark

Every raw CCD image contains counts resulting from a ‘dark current’, electrons released due to the thermal effects in
the CCD material. For both the UVB-VIS (< 0.00012 e/s/pixel) and NIR detectors (< 0.005 e”/s/pixel) the dark-current
is almost negligible. Not all pixels will have the same dark-current, some will have a high than typical current. These
are so-called ‘hot-pixels’ and it’s important that these are identified and recorded (using the create_noise_map

utility).

The purpose of the soxs_mdark recipe is to generate a master-dark frame used to remove flux attributed to the
dark-current from other frames.

Input
Data | Content Related OB
Type
im- raw dark frames (exposures with identical exposure | SOXS_gen_cal_VISDark,
ages time and detectors readout parameters) SOXS_gen_cal_NIRDark,
SOXS_img_cal_Dark

2.6. Recipes

13

../utils/create_noise_map.html
../_api/soxspipe.recipes.soxs_mdark.html
../files/master_dark.html

soxspipe Documentation, Release v0.10.2

Parameters

Parameter | Description Type| Entry Related Util
Point

-clipping- number of from the median frame flux beyond which pixel is | float | settings | clip_and_sf
sigma added to the bad-pixel mask file
-iteration- number of sigma-clipping iterations to perform when added | int | settings | clip_ and_ st
count pixels to the bad-pixel mask file
-clipping- number of deviations from the median pixel flux beyond which | float| settings | clip_and_st
sigma pixel is excluded from stack file
-clipping- number of -clipping iterations to perform before stacking float | settings | clip_and_st
iterations file

Method

Stack raw dark-frames together (using the c1ip_and_stack utility) into master-dark frames and in the process
clipping rogue pixels from the individual raw frames and reducing the read-noise contribution.

14

Chapter 2. How to cite soxspipe

ack

ack

ack

ack

../utils/clip_and_stack.html
../utils/clip_and_stack.html
../utils/clip_and_stack.html
../utils/clip_and_stack.html
../utils/clip_and_stack.html
../files/master_dark.html

soxspipe Documentation, Release v0.10.2

soxspipe mdark <inputFrames> G >3 raw dark frames

Are input frames those expected
for this receipe and of a single setup (arm,
binning, exptime etc)?

exit with error

print a summary of the raw input
frames for the user to inspect

|

prepare the individual raw frames using
the prepare_frames() method - trim
overscan, add default bad-pixel map & bad pixel map
extension, generate and add error map
extension

for each raw dark frame, calculate the
sigma-clipped mean flux level. The
combined mean of these mean flux
levels is assumed to be the master dark
level.

|

for each frame, subtract its mean flux
level to leave only the noise.

|

call to clip_and_stack() method to sigma-
clip and mean combine these noise
frames. Store the individual image masks
generated from this clip_and_stack()
method.

|

use the individual image masks
generated above to combine the
individual frame error maps exactly as
their data were combined. Associate this
master dark error map with the data
frame.

write the combined, master

dark frame to disk pasteisikians

2.6. Recipes 15

soxspipe Documentation, Release v0.10.2

Output

Data Type | Content
dark frame | frame containing typical dark-current flux accumulated over the exposure time of the input frames

QC Metrics

Metric | Description

Recipe API

class soxs_mdark (log, settings=False, inputFrames=[], verbose=False, overwrite=False)

The soxs_mdark recipe
Key Arguments
* log - logger
* settings — the settings dictionary
* inputFrames —input fits frames. Can be a directory, a set-of-files (SOF) file or a list of fits frame paths.
* verbose — verbose. True or False. Default False

* overwrite — overwrite the prodcut file if it already exists. Default False

Usage
from soxspipe.recipes import soxs_mdark
mdarkFrame = soxs_mdark (

log=1log,

settings=settings,
inputFrames=filelList
) . .produce_product ()

Todo:

¢ add a tutorial about soxs_mdark to documentation

verify input_frames ()
verify input frame match those required by the soxs_mdark recipe

If the fits files conform to required input for the recipe everything will pass silently, otherwise an exception
shall be raised.

produce_product ()
generate a master dark frame

Return:

* productPath — the path to master dark frame

16

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

2.6.1.3 soxs_mflat

The purpose of the soxs_mflat recipe is to create a single normalised master-flat frame used to correct for non-
uniformity in response to light across the detector plain.

Sources of this non-uniformity include varying pixel sensitivities, obstructions in the optical path (e.g. dust or pollen
grains), vignetting at the edges of the detector. A flat-frame is ideally an image taken where the illumination is uniform
across the light collecting pixels of the detector. This evenly exposed image can be used to identify irregularities in
the response in the detector.

Input
Datal Content Related OB
Type
im- | raw flats frames (exposures with identical exposure | SOXS_slt_cal NIRLampFlat,
ages | time and detectors readout parameters). UV-VIS re- | SOXS_slt_cal_NIRLampFlatAtt,
quires separate sets D-Lamp and QTH-Lamp flats. SOXS_slt_cal_VISLampFlat,
SOXS_slt_cal_VISLampFlatAtt
Im- | Master Bias Frame (UV-VIS only) -
age
Ta- | order table containing coefficients to the polyno-
ble | mial fits describing the order centre locations. UV-
VIS requires separate tables for D-Lamp and QTH-
Lamp.

2.6. Recipes

17

../_api/soxspipe.recipes.soxs_mflat.html
../files/master_flat.html
../files/order_table.html

soxspipe Documentation, Release v0.10.2

Parameters
Parameter Description Type En- Related
try Util
Point
-clipping-sigma number of from the median frame flux beyond which pixel is | float| set- clip_and_|
added to the bad-pixel mask tings
file
-iteration-count number of sigma-clipping iterations to perform when added | int | set- clip_and_|
pixels to the bad-pixel mask tings
file
-clipping-sigma number of deviations from the median pixel flux beyond which | float | set- clip_and_|
pixel is excluded from stack tings
file
-clipping- number of -clipping iterations to perform before stacking float | set- clip_and_|
iterations tings
file
-order-window the width of the slice to cut along the centre of each order when | int | set- -
determining mean exposure level tings
file
-length-for-edge- | length of image slice to take across orders when detecting edges | int | set- detect_on
detection tings
file
-width-for-edge- width of image slice to take across orders when detecting edges | int | set- detect_or
detection tings
file
-percentage- minimum value flux can drop to as percentage of central flux | int | set- detect_on
threshold-for- and be counted as an order edge tings
edge-detection file
-percentage- maximum value flux can claim to as percentage of central flux | int | set- detect_or
threshold-for- and be counted as an order edge tings
edge-detection file
-axis-deg degree of dispersion axis component of polynomial fit to order | int | set- detect_on
edges tings
file
-deg degree of order component of polynomial fit to order edges int | set- detect_or
tings
file
-fitting-residual- number of deviations from the median fit residual beyond | int | set- detect_or
clipping-sigma which individual data points are removed when iterating to- tings
wards a fit of order edges file
-clipping- number of sigma-clipping iterations to perform before settings | int | set- detect_or
iteration-limit on a polynomial fit for the order edges tings
file
-sensitivity- number of deviations below the median flux of a master-flat | int | set- -
clipping-sigma frame beyond which a pixel is added to the bad-pixel mask tings
file

18

Chapter 2. How to cite soxspipe

stack

stack

stack

stack

der_edges

der_edges

der_edges

der_edges

der_edges

der_edges

der_edges

der_edges

../utils/clip_and_stack.html
../utils/clip_and_stack.html
../utils/clip_and_stack.html
../utils/clip_and_stack.html
../utils/detect_order_edges.html
../utils/detect_order_edges.html
../utils/detect_order_edges.html
../utils/detect_order_edges.html
../utils/detect_order_edges.html
../utils/detect_order_edges.html
../utils/detect_order_edges.html
../utils/detect_order_edges.html

soxspipe Documentation, Release v0.10.2

2.6. Recipes 19

soxspipe Documentation, Release v0.10.2

Method

¢+ raw flat frames

soxspipe mflat <inputFrames>

l order table

Are input frames those
expected for this recipe and of a
single setup (arm, binning

exit with error

Print a summary of the raw input
frames for the user to inspect

\

Prepare the individual raw frames using
the “prepare_frames’ util - trim overscan,
add default bad-pixel map extension, +— bad pixel map
generate and add error map extension

\

Subtract bias and/or dark from indivi flat
frames using “detrend” util

i

Individual flat-frames are normalised by a first-
approximation exposure-level by measuring
the flux in a curved slice, N-pixels wide,
centred on each of the order-centres. A mean
flux level is determined from this sample and
the entire frame divided through by this mean.

i

call to “clip_and_stack’ util to sigma-clip
and mean combine the calibrated
frames. This stacked frame contains the
illumination structure as in varies within
and across orders

\

This initial stacked flat-frame is divided into all
of the individual calibrated flat frames. A more
accurate measurement of the individual
frames' exposure levels can now be calculated

by again measuring the flux in a curved slice, ¢
N-pixels wide, centred on each of the order-
centres. A mean flux level is determined from
this sample and the *original* calibrated
frames are divided through by this accurately
measured exposure level.

i

second call to “clip_and_stack’ util to
sigma-clip and mean combine the
exposure normalised frames.

i

order edges are identified with the

order table G “detect_order_edges util and saved to
an order table.

i

the inter-order background pixel values
are set to unity

\

low-sensitivity pixels are identified and
added to the master flat-frame bad-pixel
map

individual
calibrated flat-
frames

!

write product to disk master flat frame

20

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

The individual flat field frames need to have bias and dark signatures removed before they are combined. This is
achieved with the det rend utility. Here is an example of one such calibrated flat frame:

1000 60000
w 600 __ |) — 50000
é o : 2 ¥
% - >
400 :
0
200
—20000
00 250 500 750 1000 1250 1500 1750 2000
y-axis

Normalising Exposure Levels in Individual Flat Frames

Once calibrated, exposure-levels in the individual flat frames need to be normalised as fotal illumination will vary
from frame-to-frame. The individual frame exposure levels are calculated in two stages.

In the first stage the mean inner-order pixel-value across the frame is used as a first approximation of an individual
frame’s exposure level. To calculate this mean value, the order locations are used to identify a curved slice N-pixels
wide centred on each of the order-centres and bad pixels are masked (see image below). The collected inner order
pixel values are then sigma-clipped to excluded out-lying values and a mean value calculated.

70000

1000
60000
800 50000

o /%1 e .%% o

. {ﬂ/—’;——-\\ -
/_\

- \ 10000

| i

200 . /—_\\ A

o B —10000

1 | 1 1 | 1 1 |
0 250 500 750 1000 1250 1500 1750 2000
y-axis

X-axis

2.6. Recipes 21

../utils/detrend.html
https://live.staticflickr.com/65535/51237891523_cc24b22ba7_b.jpg
https://live.staticflickr.com/65535/51237856613_da50864d52_b.jpg

soxspipe Documentation, Release v0.10.2

Individual frames are then divided through by their mean inner-order pixel value in this first attempt to normalise the
exposure-levels of the frames.

1000

2.0
| 1.0
i
600 e
o
; 5 i 0.5
& =N
400
0.0
200 -0.5
-1.0
00 250 500 750 1000 1250 1500 1750 2000

y-axis

The normalised flat-frames are then combined using the c1ip_and_stack utility into a first-pass master-flat frame:

1000 20
800 . e 15
1.0
600 E T S e =
@ - -
e —_ = i HEE — 0.5
% m—— - el
400
0.0
200 -0.5
-1.0
DD 250 500 750 1000 1250 1500 1750 2000

y-axis

The second stage then is to divide each original dark and bias subtracted flat frame by this first-pass master flat (see
example below). This removes the typical cross-plane illumination and so now the mean inner-order pixel-value across
the frame will give a much better estimate of each frame’s intrinsic exposure level.

22 Chapter 2. How to cite soxspipe

https://live.staticflickr.com/65535/51238466119_6844cce08b_b.jpg
../utils/clip_and_stack/.html
https://live.staticflickr.com/65535/51237081792_6090fe56df_b.jpg

soxspipe Documentation, Release v0.10.2

X-axis

TR

”_w._,‘;_-,«Mu--Mte-.:v_r‘.w‘mc:mw;,

S iy i At

e e A AT AT

TR Co

500 750 1000 1250 1500 1750 2000
y-axis

29250

29000

28750

28500

28250

28000

27750

27500

27250

The mean inner-order pixel-value is calculated again on this frame and the original dark and bias subtracted flat is
re-normalised by divided through by this accurate measurement of its intrinsic exposure level.

1000
2.0
800 T R N § N S 1‘5
. 10
600 e T = = 5 b
w0 -
® . gEw 0.5
» — Y
=
400
0.0
200 =03
-1.0
0
0 250 500 750 1000 1250 1500 1750 2000
y-axis
2.6. Recipes 23

https://live.staticflickr.com/65535/51237134772_bf081c62cc_b.jpg
https://live.staticflickr.com/65535/51237233602_c3c96b3503_b.jpg

soxspipe Documentation, Release v0.10.2

Building a Final Master-Flat Frame

These re-normalised flats are then combined for a second time into a master-flat frame.

1000

800

600

X-axis

400

200

2.0

1.5

1.0

i — 0.5

0.0

1250 1500 1750 2000

Finally order edges are located with the detect_order edges utility and the inter-order area pixel value are set

to 1.

Low-sensitivity pixels are flagged and added to the bad-pixel map and a final master-flat frame written to file.

1000 2.0
15
800
] 1.0
600 o
] i
5 0.5
b =
400 0o
200 -0.5
-1.0
g 1250 1500 1750 2000
24 Chapter 2. How to cite soxspipe

https://live.staticflickr.com/65535/51237949461_0bc4763a06_b.jpg
../utils/detect_order_edges.html
https://live.staticflickr.com/65535/51239008475_b7c0aa33c7_b.jpg

soxspipe Documentation, Release v0.10.2

2.6. Recipes 25

soxspipe Documentation, Release v0.10.2

UV Master Flat Frame Stitching

For both the D-Lamp and QTH-Lamp master-flat frames, we
have for each order the number of pixel positions that
contributed to the final order-edge fit. Using these
numbers decide in which order to slice and stitch the D-
Lamp and QTH-Lamp master flat frames. The bluest orders
from the D-Lamp will be selected with the remaining
orders coming from the QTH-Lamp.

|

With the overlap order selected above, measure the
median flux from a square window at the centre of this
order in both D- and QTH frames. Use the ratio of these

fluxes to scale the D-Lamp frame to the QTH-Lamp frame.

!

Use upper order-edge polynomial from the D-Lamp to
define a curved, intra-order line 5 pixels above the upper
edge of the overlap order selected above.

!

Use this line to slice and stitch the D-Lamp and QTH-Lamp
orders together. This process is done on the flux images,
error maps and bad-pixel maps

!

The combined normalised frames for both the D and QTH-
Lamps are stacked to obtain a good level of flux in each

order. This stacked frame is used to re-detect the order

edges (the resulting order table is used going forward).

|

return product
P) master flat frame
files

order table

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

As the UV-VIS uses a combination of D-Lamp and QTH-Lamp flat sets, a further step is required to stitch the best
orders from each of these master-flats together into a dual lamp master-flat.

For both the D-Lamp and QTH-Lamp master-flat frames, we have for each order the number of pixel positions that
contributed to the final order-edge fit. We use these numbers to decide which orders to slice and stitch from the
D-Lamp to the QTH-Lamp master flat frame.

With a crossover order now selected, the median flux from a square window at the centre of this order in both D- and
QTH frames is measured. Using the ratio of these fluxes the D-Lamp frame is scaled to the QTH-Lamp frame.

From the upper order-edge polynomial for the D-Lamp we define a curved, intra-order line 5 pixels above the upper
edge of the crossover order selected previously. This line is used to slice and stitch the D-Lamp and QTH-Lamp orders
together. This process is done on the flux images, error maps and bad-pixel maps. Typically the bluest orders from the
D-Lamp will be selected with the remaining orders coming from the QTH-Lamp.

Finally, the combined normalised frames for both the D and QTH-Lamps are stacked to obtain a good level of flux in
each order. This stacked frame is used to re-detect the order edges (the resulting order table is used going forward).

Output

Data Type | Content
flat frame frame used correct for non-uniformity in response to light across the detector plain (including blaze)

QC Metrics

Metric | Description

Recipe API

class soxs_mflat (log, settings=False, inputFrames=[], verbose=False, overwrite=False)
The soxs_mflat recipe

Key Arguments
* log-logger
* settings — the settings dictionary
e inputFrames —input fits frames. Can be a directory, a set-of-files (SOF) file or a list of fits frame paths.
* verbose — verbose. True or False. Default False
* overwrite — overwrite the prodcut file if it already exists. Default False

Usage

from soxspipe.recipes import soxs_mflat
recipe = soxs_mflat (
log=1log,
settings=settings,
inputFrames=filelList
)

mflatFrame = recipe.produce_product ()

2.6. Recipes 27

soxspipe Documentation, Release v0.10.2

Todo:

¢ add a tutorial about soxs_mflat to documentation

verify input_frames ()
verify the input frames match those required by the soxs_mflat recipe

If the fits files conform to required input for the recipe everything will pass silently, otherwise an exception
will be raised.

produce_product ()
generate the master flat frames updated order location table (with egde detection)

Return:
* productPath — the path to the master flat frame

calibrate_frame_set ()
given all of the input data calibrate the frames by subtracting bias and/or dark

Return:
e calibratedFlats — the calibrated frames

normalise_flats (inputFlats, orderTablePath, firstPassMasterFlat=False, lamp="")
determine the median exposure for each flat frame and normalise the flux to that level

Key Arguments:
* inputFlats — the input flat field frames
* orderTablePath — path to the order table

* firstPassMasterFlat — the first pass of the master flat. Default False

- “lamp® -- a lamp tag for QL plots

Return:
* normalisedFrames — the normalised flat-field frames (CCDData array)
mask_low_sens_pixels (frame, orderTablePath, returnMedianOrderFlux=False, writeQC=True)
add low-sensitivity pixels to bad-pixel mask
Key Arguments:
* frame — the frame to work on
* orderTablePath — path to the order table
* returnMedianOrderFlux —return a table of the median order fluxes. Default False.
* writeQC — add the QCs to the QC table?
Return:
* frame — with BPM updated with low-sensitivity pixels

* medianOrderFluxDF — data-frame of the median order fluxes af
returnMedianOrderFlux is True)

stitch_uv_mflats (medianOrderFluxDF, orderTablePath)
return a master UV-VIS flat frame after slicing and stitch the UV-VIS D-Lamp and QTH-Lamp flat frames

28 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

Key Arguments:
* medianOrderFluxDF — data frame containing median order fluxes for D and QTH frames
* orderTablePath — the original order table paths from order-centre tracing

Return:
* stitchedF1lat — the stitch D and QTH-Lamp master flat frame

Usage:

mflat = self.stitch_uv_mflats (medianOrderFluxDF)

find _uvb_overlap_order_and_scale (dcalibratedFlats, gcalibratedFlats)
find uvb order where both lamps produce a similar flux. This is the order at which the 2 lamp flats will be
scaled and stitched together

Key Arguments:
* gcalibratedFlats —the QTH lamp calibration flats.
* dcalibratedFlats — D2 lamp calibration flats
Return:
* order — the order number where the lamp fluxes are similar

Usage:

overlapOrder = self.find_uvb_overlap_order_and_
—»scale(dcalibratedFlats=dcalibratedFlats, gcalibratedFlats=gcalibratedFlats)

2.6.2 Dispersion and Spatial Solutions

There is a strong curvature in the traces of the NIR orders and spectral-lines do not run perpendicular to the dispersion
direction, but are highly tilted. Therefore wavelength cannot be expressed as simply a function of pixel position, but
instead detector pixel positions (X, Y') much be mapped as a function of:

1. wavelength A
2. order number n, and
3. slit position s

This 2D mapping function is determined incrementally via the soxs_disp_solution, soxs_order_centres
and soxs_spatial_solution recipes. The soxs_straighten recipe can then be used to transform spectral
images from detector pixel-space to wavelength and slit-position space

2.6.2.1 soxs_disp_solution

The purpose of the soxs_disp_solution is to use a single-pinhole arc-lamp frame (example image above) to
generate a first guess dispersion solution.

2.6. Recipes 29

../_api/soxspipe.recipes.soxs_disp_solution.html

soxspipe Documentation, Release v0.10.2

Input

As input this recipes accepts the Pinhole Map file.

Figure 4. Full UV-VIS arm with a bright {V=8) object and different tilts on the slit for each pseudo-order

30 Chapter 2. How to cite soxspipe

../files/pinhole_map.html
https://live.staticflickr.com/65535/50292838383_b824f69a86_o.png
https://live.staticflickr.com/65535/50636320023_33a47c36d0_o.png

soxspipe Documentation, Release v0.10.2

Data Content Related OB

Type

Image | Arc Lamp through single pinhole mask

SOXS_slt_cal_VISArcsPinhole,
SOXS_slt_cal NIRArcsPinhole
Image | Master Dark Frame (VIS only) -
Image | Master Bias Frame (VIS only) -
Image | Dark frame (Lamp-Off) of equal exposure length as
single pinhole frame (Lamp-On) (NIR only)

File Pinhole Map

SOXS_slt_cal_NIRArcsPinhole

Parameters
Parameter | Description Type En- | Related Util
try
Point
-window- the side-length (in pixels) of the square window used to search for | int | set- create_dig
size arc-line detection tings
file
-deg the order of polynomial used to fit spectral-orders of detected arc- | int | set- create_dig
lines tings
file
-deg the order of polynomial used to fit wavelengths of detected arc-lines | int | set- create_dig
tings
file
-fitting- sigma distance limit, where distance is the difference between the | float| set- create_dig
residual- detected and polynomial fitted positions of an arc-line, outside of tings
clipping- which to remove lines from the fit file
sigma
-clipping- number of sigma-clipping iterations to perform before settings on a | int | set- create_dig
iteration- polynomial fit for the dispersion solution tings
limit file
Method
After preparing and calibrating the single-pinhole arc-lamp frame (using the detrend), the

create_dispersion_map) util is employed to detect and measure the positions of the arc lines on the

frame. Below you can see the bright arc-lines outshining the traces of the order-centres and the detection of one of

these lines during the create_dispersion_map) util.

2.6. Recipes

31

persion_map

persion_map

persion_map

persion_map

persion_map

../files/pinhole_map.html
../utils/create_dispersion_map.html
../utils/create_dispersion_map.html
../utils/create_dispersion_map.html
../utils/create_dispersion_map.html
../utils/create_dispersion_map.html
../utils/detrend.html
../utils/create_dispersion_map.html
../utils/create_dispersion_map.html

soxspipe Documentation, Release v0.10.2

Once the line positions have been measured, a dispersion solution is generated by iteratively fitting a global polynomial
against the observed line-positions (see create_dispersion_map) for details). The final product is a Dispersion
Map file.

32 Chapter 2. How to cite soxspipe

https://live.staticflickr.com/65535/50293674417_80470ed5f0_o.png
https://live.staticflickr.com/65535/50294361037_a5a5ddd7f0_o.png
../utils/create_dispersion_map.html
../files/dispersion_map.html
../files/dispersion_map.html

soxspipe Documentation, Release v0.10.2

single pinhole arc-lamp frame

master dark frame soxspipe disp_solution

master bias frame

Are input frames those expected
for this receipe?

|

prepare the single pinhole arc-lamp
frame using the prepare_frames()
method - trim overscan, add default
bad-pixel map extension, generate and
add error map extension

|

single pinhole arc-lamp frame

dark frame of equal exposure time

exit with error

subtract bias and/or dark using detrend()
method

|

generate a dispersion map file by using
create_dispersion_map() to detect the arc-
lines on the frame and iteratively fit a global
polynomial solution to the observed line
positions

4+— bad pixel map
¢ single-pinhole detector
position map

first guess global

write out product
file

solution

Output

Data Type Content

file (subject to change)

First guess Dispersion Map

2.6. Recipes

33

../files/dispersion_map.html

soxspipe Documentation, Release v0.10.2

QC Metrics

The typical solution for the soxs_disp_solution recipe has sub-pixel residuals.

34 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

residuals of global dispersion solution fitting - single pinhole
mean res: 0.12 pix, res stdev: 0.06
observed arc-line positions (post-clipping)

S — T,

y residual

=0.2 =01 00 0.1 0.2 n'llii.ﬂ 0.1 0.2
x residual xy residual

2.6. Recipes 35

https://live.staticflickr.com/65535/50330665336_accab9eed4_o.png

soxspipe Documentation, Release v0.10.2

Metric | Description

Recipe API

class soxs_disp_solution (log, settings=False, inputFrames=[], verbose=False, overwrite=False)
generate a first approximation of the dispersion solution from single pinhole frames

Key Arguments
* log - logger
e settings — the settings dictionary
e inputFrames —input fits frames. Can be a directory, a set-of-files (SOF) file or a list of fits frame paths.
* verbose — verbose. True or False. Default False

* overwrite — overwrite the prodcut file if it already exists. Default False

Usage
from soxspipe.recipes import soxs_disp_solution
disp_map_path = soxs_disp_solution (

log=1log,

settings=settings,
inputFrames=sofPath
) .produce_product ()

Todo:

¢ add a tutorial about soxs_disp_solution to documentation

verify input_frames /()
verify input frames match those required by the

N

‘soxs_disp_solution " " recipe

If the fits files conform to required input for the recipe everything will pass silently, otherwise an exception
shall be raised.

produce_product ()
generate a fisrt guess of the dispersion solution

Return:

* productPath — the path to the first guess dispersion map

36 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

2.6.2.2 soxs_order centres

The purpose of the soxs_order_centres recipe is to find and fit the order centres with low-level polynomials.

Input
Data | Content Related OB
Type
Im- Flat lamp through a single-pinhole mask SOXS_slt_cal_VISLampFlatPinhole,
age SOXS_slt_cal_ NIRLampFlatPinhole
Im- Master Dark Frame (VIS only) -
age
Im- Master Bias Frame (VIS only) -
age
Im- Dark frame (Lamp-Off) of equal exposure length as | SOXS_slt_cal_NIRLampFlatPinhole
age single-pinhole frame (Lamp-On) (NIR only)
File First guess dispersion solution -
Parameters
Parameter | Description Type En- | Related
try Util
Point
-sample- number of times along the order in the dispersion direction to measure | int | set- de-
count the order-centre trace tings | tect_continglum
file utility
-sigma-limit | minimum value a peak must be above the median value of pixel to be | int | set- de-
considered for order-trace fitting tings | tect_continlum
file utility
-axis-deg degree of dispersion axis component of polynomal fit to order-centre int settings
traces file
-deg degree of order component of polynomal fit to order-centre traces int settings
file
-fitting- sigma distance limit, where distance is the difference between the de- | float| set- de-
residual- tected and polynomial fitted positions of the order-trace, outside of tings | tect_continglum
clipping- which to remove lines from the fit file utility
sigma
-clipping- number of sigma-clipping iterations to perform before settings on a | int | set- de-
iteration- polynomial fit for the order-centre traces tings | tect_continjlum
limit file utility
2.6. Recipes 37

../_api/soxspipe.recipes.soxs_order_centres.html
../utils/detect_continuum.html
../utils/detect_continuum.html
../utils/detect_continuum.html
../utils/detect_continuum.html
../utils/detect_continuum.html
../utils/detect_continuum.html
../utils/detect_continuum.html
../utils/detect_continuum.html
../utils/detect_continuum.html
../utils/detect_continuum.html
../utils/detect_continuum.html
../utils/detect_continuum.html

soxspipe Documentation, Release v0.10.2

Method

Once the single-pinhole flat-lamp frame has had the bias, dark and background subtracted it is passed to the de-

tect_continuum utility to fit the order centres.

single pinhole flat-lamp frame

master dark frame soxspipe order_centres

master bias frame

Are input frames those expected
for this receipe?

\

4—

prepare the single pinhole arc-lamp
frame using the prepare_frames()
method - trim overscan, add default
bad-pixel map extension, generate and
add error map extension

\

single pinhole flat-lamp frame

dark frame of equal exposure time

exit with error

4 bad pixel map

subtract bias and/or dark using detrend()
method

\

use the “detect_continuum’ utility to generate

2D polynomial fits to the order centre location.

\

write out product

order table file

4_

Output
Data Type | Content
File order table containing coefficients to the polynomial fits describing the order centre locations
38 Chapter 2. How to cite soxspipe

../utils/detect_continuum.html
../utils/detect_continuum.html
../files/order_table.html

soxspipe Documentation, Release v0.10.2

QC Metrics

Plots similar to the one below are generated after each execution of soxs_order_centres.

2.6. Recipes 39

../_api/soxspipe.recipes.soxs_order_centres.html

soxspipe Documentation, Release v0.10.2

-

-axis

x residual

0.04

0.02

-0.02

-0.06

traces of order-centre locations - pinhole flat-frame
mean res: 0.01 pix, res stdev: 0.01

1D guassian peak positions (post-clipping)

1000

1000

1500 2000 2500
y-axis

order-location fit solutions

1500 2000 2500
W-axls

I

o T P S e

| [1
500 1000 1500
x pixel position

1 L 1
1] 1000 2000 3000
y pixel position

40

Chapter 2. How to cite soxspipe

https://live.staticflickr.com/65535/50345130012_4e869a6a7f_o.png

soxspipe Documentation, Release v0.10.2

Metric | Description

Recipe API

class soxs_order_centres (log, settings=False, inputFrames=[], verbose=False, overwrite=False)
The soxs_order_centres recipe

Key Arguments

L]

log - logger

settings — the settings dictionary

inputFrames —input fits frames. Can be a directory, a set-of-files (SOF) file or a list of fits frame paths.
verbose — verbose. True or False. Default False

overwrite — overwrite the prodcut file if it already exists. Default False

Usage
from soxspipe.recipes import soxs_order_centres
order_table = soxs_order_centres(

log=1log,

settings=settings,
inputFrames=a["inputFrames"]

) .produce_product ()

Todo:

¢ add a tutorial about soxs_order_centres to documentation

verify input_frames /()

verify input frames match those required by the soxs_order_centres recipe

Return:

- “"None™~

If the fits files conform to required input for the recipe everything will pass silently, otherwise an exception
shall be raised.

produce_product ()

generate the order-table with polynomal fits of order-centres

Return:

* productPath — the path to the order-table

2.6. Recipes a1

soxspipe Documentation, Release v0.10.2

2.6.2.3 soxs_spatial_solution - PLANNED

The purpose of this recipe is to further enhance the wavelength solution achieved with soxs_disp_solution by
expanding the solution into the spatial dimension (along the slit). This 2-dimensional solution will then account for
any tilt in the spectral lines.’

Each pinhole in the multi-pinhole mask is 0.5" in diameter and the 9 pinholes are evenly spaced along the 11" slit with
a 1.4" gap between adjacent holes. This knowledge affords us the ability to now map the dispersion solution along the
spatial direction.

Input
Data | Content Related OB
Type
Im- Arc Lamp through multi-pinhole mask SOXS_slt_cal_VISArcsMultiplePinhole,
age SOXS_slt_cal_ NIRArcsMultiplePinhole
Im- Master Dark Frame (VIS only) -
age
Im- Master Bias Frame (VIS only) -
age
Im- Dark frame (Lamp-Off) of equal exposure length | SOXS_slt_cal NIRArcsMultiplePinhole
age as multi-pinhole frame (Lamp-On) (NIR only)
File First-guess Dispersion Map table
File Pinhole Map

Method

Having prepared the multi-pinhole frame the bias and dark signatures are removed and the frame is divided
through by the master flat frame. The calibrated frame and the first-guess dispersion map are passed to the
create_dispersion_map utility to produce a 2D dispersion solution covering both the spectral and spatial di-
mensions.

42 Chapter 2. How to cite soxspipe

../files/dispersion_map.html
../files/pinhole_map.html
../utils/prepare_frames.html
../utils/detrend.html
../utils/create_dispersion_map.html

soxspipe Documentation, Release v0.10.2

mutli-pinhole arc-lamp frame

master flat frame)

master dark frame

master bias frame

dispersion map from soxs_disp_solution

2D global

dispersion
solution

Output

soxspipe spatial_solution

Are input frames those expected
for this receipe?

|

prepare the multi-pinhole arc-lamp
frame using the prepare_frames()
method - trim overscan, add default
bad-pixel map i and
add error map extension

|

multi-pinhole arc-lamp frame

4_

4—

subtract bias and/or dark using detrend()
method

divide by master flat-frame

generate a dispersion map file by using
create_dispersion_map() to detect the arc-
lines on the frame and iteratively fit a global
polynomial solution to the observed line
positions

D —

write out product
file

dark frame of equal exposure time

master flat frame

dispersion map from soxs_disp_solution

exit with error

bad pixel map

multi-pinhole detector
position map

Data Type Content

File (subject to | Dispersion Map table giving coefficients of polynomials describing 2D dispersion/spatial

change) solution

2.6. Recipes

43

../files/dispersion_map.html

soxspipe Documentation, Release v0.10.2

44 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

QC Metrics

residuals of global dispersion solution fitting - single pinhole
mean res: 0.17 pix, res stdev: 0.10

shserved arc-ling positions (post-clipping)

I NS

0 250 SO0 750 1000 1250 1500 1750 2000

yrantd

global dispersion solution

W g

0 250 SO0 780 1000 1250 1800 1750 2000

yeHE
()
(4 =
0.4 =
]
_ b2
5 3
o
=
.E ﬂ D -
&
=]
=02 =
=04 F 1
=G i o
-0.50 -0.25% 000 025 050 OO 0.2 0.4 (i)

x residual xy residual

2.6. Recipes 45

https://live.staticflickr.com/65535/51171156692_0588cc30d6_o.png

soxspipe Documentation, Release v0.10.2

Metric | Description

Recipe API

class soxs_spatial_solution (log, settings=False, inputFrames=[], verbose=False, over-

write=False, create2DMap="True, polyOrders=False)
The soxs_spatial_solution recipe

Key Arguments
* log —logger
e settings — the settings dictionary
* inputFrames —input fits frames. Can be a directory, a set-of-files (SOF) file or a list of fits frame paths
* verbose — verbose. True or False. Default False
* overwrite — overwrite the prodcut file if it already exists. Default False
* create2DMap - create the 2D image map of wavelength, slit-position and order from disp solution.

* polyOrders —the orders of the x-y polynomials used to fit the dispersion solution. Overrides parameters
found in the yaml settings file. e.g 345435 is order_x=3, order_y=4 ,wavelength_x=5 ,wavelength_y=4,
slit_x=3 ,slit_y=5. Default False.

See produce_product method for usage.

Todo:

¢ add a tutorial about soxs_spatial_solution to documentation

verify input_frames ()
verify input frames match those required by the " “soxs_spatial_solution " recipe

If the fits files conform to required input for the recipe everything will pass silently, otherwise an exception
shall be raised.

produce_product ()
generate the 2D dispersion map

Return:
* productPath — the path to the 2D dispersion map

Usage

from soxspipe.recipes import soxs_spatial_solution
recipe = soxs_spatial_solution(

log=log,

settings=settings,

inputFrames=filelList
)

disp_map = recipe.produce_product ()

1. relative to the perpendicular of the dispersion direction

46 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

2.6.2.4 soxs_straighten - PLANNED

This recipe takes the full dispersion map given by soxs_spatial_solution and uses it to map images from their
original representation of the detector surface to one that presents the signal in a wavelength by slit-position coordinate
system.

Input
Data Type | Content Related OB
File Coefficients of polynomials providing a full dispersion-spatial solution
Image An associated spectral image requiring rectification Many
Parameters
Parameter Description Type| Entry Related
Point Util
straighten_grid_res_wavelesielf the grid cell in wavelength dimen- | float | settings
sion (nm) file
straighten_grid_res_split]| size of the grid cell in slit dimension (arc- | float | settings
sec) file
Method

We now have a pair of polynomials that can be used to give the exact pixel on the detector containing flux resulting
from a specific order, with a given wavelength and slit position.

. . &
X:E Ciij’nZX)\JXS
ijk

Y:ZCijk Xnix)\j Xsk
ijk

To begin we want to create a full wavelength and slit-position map; a 2D grid of wavelengths along one axis and slit-
position along the other. Using the polynomial solutions above, we populate each cell in the grid with its corresponding
detector pixel coordinate. The 2D grid is of fine enough resolution so that many cells in the grid are mapped to
each individual detector pixel. With this map in hand we can now assign flux recorded in each detector pixel to the
corresponding cells in the 2D wavelength and slit-position grid. The flux from each detector is evenly distributed
between all cells found to be associate with that pixel; so if 9 cells are associated then each cell gets 1/9th of the pixel
flux.

The error and bad-pixel extensions go through the same mapping process.

recipes/soxg_straighten.png

2.6. Recipes a7

soxspipe Documentation, Release v0.10.2

Output

Data Type | Content
Images The straightened images containing flux represented in wavelength space; one for each order

QC Metrics

Metric | Description

Recipe API

2.7 Utilities

The soxspipe utilities can be viewed as the tool-kit with which the soxspipe recipes are built. Many of these utilities
are used across multiple recipes and they can either be stand-alone objects or methods of the recipe itself.

2.7.1 clip_and_stack

clip_and_stack mean combines input frames after sigma-clipping outlying pixels using a median value with
median absolute deviation (mad) as the deviation function.

Before combining the frames we want to ‘clip’ any outlying pixel values found in the individual frames that are to be
stacked. We isolate and remove pixels from any averaging calculation (mean or median) that have a value that strays
too far from the ‘typical’ pixel value.

Using the median pixel value as the ‘typical’ value and the median absolute deviation (MAD) as a proxy for the
standard-deviation we can accurately identify rogue pixels. For any given set of pixel values:

N
1 .
MAD = i E_O |z; — median(x)|.

The clipping is done iteratively so newly found rogue pixels are masks, median values are recalculated and clipping
repeated. The iterative process stops whenever either no more bad-pixels are to be found or the maximum number of
iterations has been reached.

After the clipping has been completed individual frames are mean-combined, ignoring pixels in the individual bad-
pixel masks. If a pixel is flagged as ‘bad’ in all individual masks it is added to the combined frame bad-pixel mask.

48 Chapter 2. How to cite soxspipe

../recipes/index.html
../_api/soxspipe.recipes._base_recipe_.html#soxspipe.recipes._base_recipe_._base_recipe_.clip_and_stack

soxspipe Documentation, Release v0.10.2

clip_and_stack() - method

¢+— N 'pre' frames

l

read the sigma clipping parameters for

the specific recipe calling ¢+ soxspipe.yaml

clip_and_stack() (e.g. soxs_mbias)

Have we iterated over
the sigma-clipping routine more than
the agreed limit?

N

for each pixel in the stack of N images compute the
clipped median (ignoring pixels flagged in individual
masks) and median absolute deviation.

l

Do any pixel values from the
individual frame lie outside of the sigma-
clipping boundaries?

— Vs S add outlying pixels to tl::alsdlwdul frame bad-pixel

mean combine the individual frame ignoring pixels

3 in the individual bad-pixel masks. If a pixel is

flagged in all individual masks add it to the
combined frame mask

l

return combined frame

_base_recipe_.clip_and_stack (frames, recipe, ignore_input_masks=False,
post_stack_clipping=True)
mean combine input frames after sigma-clipping outlying pixels using a median value with median absolute
deviation (mad) as the deviation function

Key Arguments:

2.7. Utilities 49

soxspipe Documentation, Release v0.10.2

* frames — an ImageFileCollection of the frames to stack or a list of CCDData objects
* recipe —the name of recipe needed to read the correct settings from the yaml files
* ignore_input_masks — ignore the input masks during clip and stacking?

* post_stack_clipping — allow cross-plane clipping on combined frame. Clipping settings in
setting file. Default True.

Return:
* combined_frame — the combined master frame (with updated bad-pixel and uncertainty maps)
Usage:

This snippet can be used within the recipe code to combine individual (using bias frames as an example):

combined_bias_mean = self.clip_and_stack(
frames=self.inputFrames, recipe="soxs_mbias", ignore_input_masks=False, post_
—stack_clipping=True)

2.7.2 create_dispersion_map

The create_dispersion_map utility is used to search for arc-lines in the single/multi-pinhole arc-lamp
frames and then iteratively fit a global polynomial dispersion solution (and spatial-solution in the case of
multi-pinhole frame) with the observed line-positions. It is used by both the soxs_disp_solution) and
soxs_spatial_ solution) solution recipes.

50 Chapter 2. How to cite soxspipe

../_api/soxspipe.commonutils.create_dispersion_map.html
../recipes/soxs_disp_solution.html
../recipes/soxs_spatial_solution.html

soxspipe Documentation, Release v0.10.2

calibrated single-pinhole arc-lamp frame

Pinhole Map line list mapping 4, n, s to
pixel-positions (X, Y)

—_—

using the first guess
Dispersion Map calculate the
shift between the predicted
and the observed line
positions for the central

pinholes. Update the Pinhole

Map by applying the same
shift to the other pinholes.

d multi-pinhole arc-lamp frame

PN
a

create_dispersion_map()

first guess Dispersion Map

select the correct
pinhole map for
input frame arm

filter the Pinhole Map line-
list to only contain the
central slit position

is this a
single-pinhole
frame?

&— NO

For each line in the Pinhole Map
line-list, create an image stamp
centred on the predicted pixel-

Generate a 2D image if the
dispersion map in detector pixel
space using the ‘map_to_image™

util.

2D Dispersion
Map Image

write out product

position, of dimensions winX and
winY, from the pinhole calibration
frame

\

a sigma-clipped median pixel value
is calculated and then subtracted
from each stamp

\

DAOStarFinder used to search for

the observed detector position (X,

Y) of the arc-line via 2D Gaussian
profile fitting on each stamp

\

The newly generate list of

observed (X, Y) arc-line pixel remove the
positions is fitted with 2 Cheybshev ¢ S il
polynomials to form a global >
dispersion (and spatial for multi- postions

pinhole) solution for the detector.

\

The residuals of the fit are

calculated by subtracting the NO

observed pixel-positions from the
global fit positions

|

has the
maximum number of
iterations been reached for the
sigma-clipping of the
global fit?

do any of the
pixel-position lie outside of
the sigma-clipping limits set
for the recipe?

— YES >

is this the final full
dispersion map?

&—— VYES

Dispersion Map fles

NO

2.7. Utilities

51

soxspipe Documentation, Release v0.10.2

In the static calibration suite we have Pinhole Maps listing the wavelength A, order number n and slit position s of the
spectral lines alongside a first approximation of their (X, Y") pixel-positions on the detector.

If the input frame is a single-pinhole frame, we can filter the Pinhole Map to contain just the central pinhole po-
sitions. If however input is the multi-pinhole frame then we use the first guess Dispersion Map (created with
soxs_disp_solution)to calculate the shift between the predicted and the observed line positions for the central
pinholes. We then update the Pinhole Map by applying the same shift to the other pinholes.

For each line in the Pinhole Map line-list:

* an image stamp centred on the predicted pixel-position (X,, Y,), of dimensions winX and winY, is generated
from the pinhole calibration frame

* asigma-clipped median pixel value is calculated and then subtracted from each stamp

* DAOStarFinder is employed to search for the observed detector position (X, Y) of the arc-line via 2D Gaussian
profile fitting on the stamp

We now have a list of arc-line wavelengths and their observed pixel-positions and the order they were detected in.
These values are used to iteratively fit two polynomials that describe the global dispersion solution for the detector. In
the case of the single-pinhole frames these are:

X:ZCinniXAj
ij
Y:ZCinniX)\j
ij
where) is wavelength and n is the echelle order number.

In the case of the multi-pinhole we also have the slit position s and so adding a spatial solution to the dispersion
solution:

X = E CiijniXAjXSk

ijk

Y:ZcijkxnixAj x sk
ijk
Upon each iteration the residuals between the fits and the measured pixel-positions are calculated and sigma-clipping
is employed to eliminate measurements that stray to far from the fit. Once the maximum number of iterations is reach,
or all outlying lines have been clipped, the coefficients of the polynomials are written to a Dispersion Map file.

52 Chapter 2. How to cite soxspipe

../files/pinhole_map.html
../recipes/soxs_disp_solution.html
../files/dispersion_map.html

soxspipe Documentation, Release v0.10.2

2.7.2.1 2D Image Map

WAVELENGTH \ i SLIT POSITION ORDER NUMBER
o

The Dispersion Map is used to generate a triple extension FITS file with each extension image exactly matching the
dimensions of the detector. The first extension contains the wavelength value at the centre of each pixel location, the
second the slit-position and the third the order number. The solutions for these images are iteratively converged on in
a brute force manner (see workflow diagram below). These image maps are used in sky-background subtraction and
object extraction utilities.

2.7. Utilities 53

https://live.staticflickr.com/65535/51862169299_f6773a5b0f_b.jpg
../files/dispersion_map.html

soxspipe Documentation, Release v0.10.2

Spectral format table detailing the how

create_dispersion_map.map_to_image()

Unpack the order table and generate 3 image
array placeholders with the same format at the
detector. Set order pixels to NaN and non-
order pixels to 0. One image array is to collect
the wavelength values for the centre of each
pixel, the second is to collect the slit positions
and the third for the order number.

|

Identify the range covered by each

the orders typically present
on the frame

collect wavelength, slit-position

order from the spectral format table

!

For each order, generate a fine-grained
wavelength-slit position grid so that multiple
grid cells occupy each detector pixel when
overlayed.

\

Using the “dispersion_map_to_pixel_arrays()”
util, map the wavelength-slit position grid cells

to their sub-XY-pixel positions (i.e. their
positions in the detector space)

\

Group wavelength-slit grid cells into unique
detector pixels. There should be many grid
cells per pixel.

\

For every group determine each cell's
displacement from the centre of the pixel, the
mean cell pixel position and the wavelength
and slit-position standard deviation of
wavelength and slit-position.

!

Does the
lowest displaced cell have

and order numbers for the pixel in YES
previously generated image arrays.

files

Write out the wavelength,
slit-position and order-
number pixel maps to file (3
extension FITS image)

lower than the given
maximum displacement
threshold?

Do any inner-
order pixels remain
with NaN value?

&— N0 ——

YES

!

For each remaining pixel, determine if the lowest displaced cell
or the mean cell pixel position is closest to the centre of the
pixel. Centred on this closest position (in wavelength, slit-
position space), recreate a finer cell grid 2 times the wavelength
STD wide and 2 times the slit-position STD high (i.e. zooming in
on the centre of the pixel).

|

Collect together all wavelength and slit-positions of the new
finer grids.

class create_dispersion_map (log, settings, recipeSettings, pinholeFrame, firstGuessMap=False,

Key Arguments:

orderTable=Fualse,

gcTable=False,

Name=False, create2DMap=True)
detect arc-lines on a pinhole frame to generate a dispersion solution

productsTable=False,

sof-

54

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

* log—logger

* settings — the settings dictionary

* recipeSettings — the recipe specific settings

* pinholeFrame — the calibrated pinhole frame (single or multi)

e firstGuessMap — the first guess dispersion map from the soxs_disp_solution recipe
(needed in soxs_spat_solution recipe). Default False.

* orderTable — the order geometry table

¢ gcTable — the data frame to collect measured QC metrics

* productsTable — the data frame to collect output products
* sofName — name of the originating SOF file

* create2DMap — create the 2D image map of wavelength, slit-position and order from disp solution.

Usage:

from soxspipe.commonutils import create_dispersion_map

mapPath, mapImagePath, res_plots, gcTable, productsTable = create_dispersion_map (
log=1log,

settings=settings,

pinholeFrame=frame,

firstGuessMap=False,

gcTable=self.qc,

productsTable=self.products
) .get ()

get ()
generate the dispersion map

Return:

* mapPath — path to the file containing the coefficients of the X,y polynomials of the global dis-
persion map fit

get_predicted_line_list ()
lift the predicted line list from the static calibrations

Return:

* orderPixelTable - a panda’s data-frame containing wave-
length,order,slit_index,slit_position,detector_x,detector_y

detect_pinhole_arc_line (predictedLine, iraf=True)
detect the observed position of an arc-line given the predicted pixel positions

Key Arguments:
* predictedLine —single predicted line coordinates from predicted line-list
* iraf —use IRAF star finder to generate a FWHM

Return:

* predictedLine — the line with the observed pixel coordinates appended (if detected, other-
wise nan)

write_map_to_file (xcoeff, ycoeff, orderDeg, wavelengthDeg, slitDeg)
write out the fitted polynomial solution coefficients to file

2.7. Utilities 55

soxspipe Documentation, Release v0.10.2

Key Arguments:

* xcoeff — the x-coefficients

* ycoeff — the y-coefficients

* orderDeg — degree of the order fitting

* wavelengthDeg — degree of wavelength fitting

* slitDeg —degree of the slit fitting (False for single pinhole)
Return:

* disp_map_path — path to the saved file

calculate_residuals (orderPixellable, xcoeff, ycoeff, orderDeg, wavelengthDeg, slitDeg, write-
QCs=False, pixelRange=False)
calculate residuals of the polynomial fits against the observed line positions

Key Arguments:
e orderPixelTable — the predicted line list as a data frame
* xcoeff —the x-coefficients
e ycoeff — the y-coefficients
* orderDeg — degree of the order fitting
* wavelengthDeg — degree of wavelength fitting
* slitDeg — degree of the slit fitting (False for single pinhole)
e writeQCs — write the QCs to dataframe? Default False

* pixelRange — return centre pixel and +- 2nm from the centre pixel (to measure the pixel scale)

Return:

* residuals - combined x-y residuals

* mean — the mean of the combine residuals

* std - the stdev of the combine residuals

* median — the median of the combine residuals

fit_polynomials (orderPixellable, wavelengthDeg, orderDeg, slitDeg, missingLines=False)

iteratively fit the dispersion map polynomials to the data, clipping residuals with each iteration
Key Arguments:

* orderPixelTable — data frame containing order, wavelengths, slit positions and observed
pixel positions

* wavelengthDeg — degree of wavelength fitting

* orderDeg — degree of the order fitting

* slitDeg — degree of the slit fitting (O for single pinhole)

* missingLines — lines not detected on the image
Return:

* xcoeff — the x-coefficients post clipping

* ycoeff — the y-coefficients post clipping

56 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

¢ goodLinesTable — the fitted line-list with metrics
* clippedLinesTable — the lines that were sigma-clipped during polynomial fitting

create_placeholder_ images (order=False, plot=False, reverse=False)
create CCDData objects as placeholders to host the 2D images of the wavelength and spatial solutions
from dispersion solution map

Key Arguments:

* order —specific order to generate the placeholder pixels for. Inner-order pixels set to NaN, else
set to 0. Default False (generate all orders)

* plot — generate plots of placeholder images (for debugging). Default False.

* reverse — Inner-order pixels set to 0, else set to NaN (reverse of default output).
Return:

* slitMap — placeholder image to add pixel slit positions to

* wlMap — placeholder image to add pixel wavelength values to

Usage:

slitMap, wlMap, orderMap = self._create_placeholder_images (order=order)

map_to_image (dispersionMapPath)
convert the dispersion map to images in the detector format showing pixel wavelength values and slit
positions

Key Arguments:
* dispersionMapPath — path to the full dispersion map to convert to images
Return:

* dispersion_image_filePath — path to the FITS image with an extension for wavelength
values and another for slit positions

Usage:

mapImagePath = self.map_to_image (dispersionMapPath=mapPath)

order_to_image (orderinfo)
convert a single order in the dispersion map to wavelength and slit position images

Key Arguments:

* orderInfo —tuple containing the order number to generate the images for, the minimum wave-
length to consider (from format table) and maximum wavelength to consider (from format table).

Return:
* slitMap - the slit map with order values filled
* wlMap — the wavelengths map with order values filled

Usage:

slitMap, wlMap = self.order_to_image (order=order,minWl=minWl, maxWl=maxWl)

convert_and_fit (order, bigWlArray, bigSlitArray, slitMap, wiMap, iteration, plots=False)
convert wavelength and slit position grids to pixels

Key Arguments:

2.7. Utilities 57

soxspipe Documentation, Release v0.10.2

* order — the order being considered
* bigWlArray — 1D array of all wavelengths to be converted
* bigSlitArray— 1D array of all split-positions to be converted (same length as bigWlArray)
* slitMap — place-holder image hosting fitted pixel slit-position values
* wlMap — place-holder image hosting fitted pixel wavelength values
* iteration — the iteration index (used for CL reporting)
* plots —show plot of the slit-map
Return:
* orderPixelTable — dataframe containing unfitted pixel info
* remainingCount — number of remaining pixels in orderTable

Usage:

orderPixelTable = self.convert_and_fit(
order=order, bigWlArray=bigWlArray, bigSlitArray=bigSlitArray,
—slitMap=slitMap, wlMap=wlMap)

create_new_static_line_list (dispersionMapPath)
using a first pass dispersion solution, use a line atlas to generate a more accurate and more complete static

line list

Key Arguments:

- “dispersionMapPath™ —-- path to the first pass dispersion solution

Return:

- "newPredictedLinelist®™ -- a new predicted line list (to replace the static,

—calibration line-1ist)

58 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

2.7.3 create_noise_map - PLANNED

¢+ prepared dark frames

create_noise_map()

5

for each stacked pixel compute it's

standard devation ('noisiness') in

the stacking direction to create a
'noise image'

\

read the noise sigma clipping 4
parameters

soxspipe.yaml

!

Have we iterated over
the sigma-clipping routine more than
the agreed limit?

calcuate the clipped median (ignoring pixels flagged
in previous iteration) and median absolute deviation
for the entire noise image

!

YES
Do any pixel values lie outside of the _ L . L
signia-clipping boundaries? YES = add outlying pixels to the noise bad-pixel map
NO
> return the nosie bap-pixel map

2.7. Utilities 59

soxspipe Documentation, Release v0.10.2

2.7.4 detect_ continuum

The purpose of the detect__continuum utility is to find and fit the order centres with low-level polynomials.

detect_continuum()

!

Spectral format table detailing the how

the orders typically present themselves —D
on the frame

Select the correct spectral
format table for the input
frame

5

¢

For each order in the spectral format table read the
minimum and maximum wavelength values and create an
array of evenly spaced (spacing size a recipe parameter)

wavelength values within this range. One wavelength array
per order.

\

For each wavelength in each array, use the dispersion map
from “soxs_disp_solution” to generate its approximate (X,Y)
pixel coordinate counterpart. These pixel arrays are the
first approximation of the order locations. One pixel array
per order.

\

For each (X,Y) coordinate in each pixel array, cut a 1D N-
pixel (N is a recipe parameter) slice centred on the
coorinate in the cross-dispersion direction.

\

For each slice fit a guassian profile to the pixel values and
record the peak (X,Y) pixel position. One array of peak (X,Y)
coordinates per order.

\

For each peak pixel array fit a low-order polynomial of Y as.
a function of X.

5

The residuals of each fit are calculated by subtracting the
peak pixel-positions from the fit positions.

l

do any of the
pixel-position lie outside of
the sigma-clipping limits set
for the recipe?

order table write out product

4

calibrated single-pinhole flat-lamp frame

guess dispersion map from soxs_disp_solution

Remove outlying
pixel positions

has the
maximum number of
iterations been reached for the
sigma-clipping of the
global fit?

files

The utility takes as input a calibrated single pinhole flat-frame which displays the traces of the order centre locations:

60

Chapter 2. How to cite soxspipe

../_api/soxspipe.commonutils.detect_continuum.html

soxspipe Documentation, Release v0.10.2

From a spectral format table (specific to the arm in question) we know the minimum and maximum wavelength values
for each order. Then using the first guess dispersion map generated by soxs_disp_solution we generate an
array of approximate pixel locations on each order centre between these wavelength limits.

N KN R

NN K]

X-axis

0 250 500 750 1000 1250 1500 1750 2000
y-axis

Centred on each pixel position we take a single-pixel wide image slice in the cross-dispersion direction N-pixels long
(N is a recipe parameter). A 1D gaussian is fitted against the pixel slice and the peak pixel-position is stored.

2.7. Utilities 61

https://live.staticflickr.com/65535/50318769388_03e2329c2f_o.png
../files/spectral_format_table.html
../files/dispersion_map.html
../recipes/soxs_disp_solution.html
https://live.staticflickr.com/65535/50341874392_aa0f4f02da_o.png

soxspipe Documentation, Release v0.10.2

400 -
300 -
%
= 200 -
100 -
]
0- = - . - . ® = .
00 25 50 7.5 100 125 15.0 17.5
Position

Finally, for each order, the set of gaussian peak pixel-positions is fitted with a low-order polynomial (X as a function
of Y).

X:ici xY?
i=0

Where n is the degree of the polynomials. Polynomials are iteratively fitted while sigma-clipping pixel-positions with
outlying residuals. Results are stored in an order table.

62 Chapter 2. How to cite soxspipe

https://live.staticflickr.com/65535/50320359807_b4ae69c556_o.png
../files/order_table.html

soxspipe Documentation, Release v0.10.2

X-axis

order-location fit solutions

0 250

500 750 1000 1250 1500 2000
y-axis
0.10 |- - :
v
3
0.05 |4 =
[
3 &
@ 0.00 [-
@ .
> 1 |
-0.05 |-+ H
_Dlﬂ __' — "
0 250 500 750 1000 O 500 1000 1500 2000
X pixel position y pixel position
2.7. Utilities 63

https://live.staticflickr.com/65535/50341080558_27e22d1666_o.png
https://live.staticflickr.com/65535/50344277283_7fb1f19946_o.png

soxspipe Documentation, Release v0.10.2

2.7.5 detect_order edges — COMPLETED

The purpose of the detect_order_edges utility is to detect the edges of each order on the detector.

The utility takes as input a fully illuminated slit image, that is, a calibrated flat-field frame or a stacked flat-field frame
(preferable as cosmic ray hits will be removed from the stack frame). The second input is the order table generated by
the soxs_order_centres recipe which provides an estimation of a. the order locations, and b. the order shapes.

For each order an array of central pixel positions is generated. At each pixel position a N-pixel long, M-pixel wide
image slice in the cross-dispersion direction (N and M are recipe parameters) is cut from the flat-frame. The slice
is collapsed to a 1D array by taking the median value across its width (ignoring masked pixels). Further median
smoothing is applied along the length of the slice to compensate of any rogue pixel values. Below you can see an
example of a slice with the grey dot representing the collapsed 1D slice pixel values and the red crosses showing the
median smoothed values.

0404~ ® order edge

= threshold

0.35 |
0.30 } ®
0.25 |

=

=2 0201

L
0.15 |-
0.10 }

0.05 |- &

0.00 -

| | | | | |]] =
0 10 20 30 40 50 60 70 80

Position

From the central 1D slice in each order the minimum and maximum fluxes are calculated to give a flux range. The
absolute minimum and maximum flux thresholds are determined from the percentage thresholds given as recipe pa-
rameters. If the minimum threshold was set at 25% then the absolute flux would be:

threshold = minvalue + (maxvalue — minvalue) x 0.25

For each slice along each order the pixel-locations xmin and xmax along the order edge where the flux reaches this
minimum flux threshold are detected and recorded (see red circles in the figure above). If the minimum flux is not
recorded at any point along the order edge, the threshold is slowly incremented up to a maximum flux until the
threshold is registered. Slices where both edges are not detected before the maximum flux threshold is reached are
rejected.

Finally for each order the arrays of xmin and xmax pixel-positions are iteratively fitted with low order polynomials
of Y as a function of X. The new order table is written to file and now includes the upper and lower-edge locations
alongside the central location for each order.

64 Chapter 2. How to cite soxspipe

../_api/soxspipe.commonutils.detect_order_edges.html
../recipes/soxs_order_centres.html
https://live.staticflickr.com/65535/50372050666_b7a6470afb_o.png
../files/order_table.html

soxspipe Documentation, Release v0.10.2

1000

800

x-axis

1000

800

600

X-axis

400

200

detection of order-edge locations - flat-frame
mean res: 0.02 pix, res stdev: 0.02

upper and lower order edge detections

R R

250 500 750 1000 1250 1500 1750 2000
y-axis

order-location fit solutions

R e

250 500 750 1000 1250 1500 1750 2000
y-axis

0.10

0.05

0.00 -

X residual

—-0.05

-0.10

250 500 750 1000 O 500 1000 1500 2000
X pixel position y pixel position

2.7. Utilities

65

https://live.staticflickr.com/65535/50393406747_750a1f2c31_o.png

soxspipe Documentation, Release v0.10.2

2.7.6 detector_lookup
The purpose of the detector_lookup utility is to act as reference in the code for the various characteristics of the
soxs detectors.

When initiated detector_lookup reads the detector characteristics from a Detector Parameters file and can later
serve these parameters to the soxspipe code when requested.

class detector_lookup (log, settings=False)
return a dictionary of detector characteristics and parameters

Key Arguments:

* log—logger

* settings — the settings dictionary
Usage:

To initiate a detector_lookup object, use the following:

from soxspipe.commonutils import detector_lookup
detector = detector_lookup (
log=1log,
settings=settings
) .get ("NIR")
print (detector["science-pixels"])

get (arm)
return a dictionary of detector characteristics and parameters

Key Arguments:

* arm — the detector parameters to return

2.7.7 filenamer

The purpose of the £ilenamer utility is to implement the file-naming scheme as laid out here. This util is usually
called to determine a file name before writing a frame/table/product to disk.

2.7.8 keyword_lookup
The purpose of the keyword_lookup utility is to act as a lookup-reference in the code for specific SOXS FITS
Header keywords.

When initiated keyword_1lookup reads the keywords from a Keyword Dictionary file and can later serve the key-
words names to the soxspipe code when requested.

class keyword_lookup (log, instrument=False, settings=False)
The worker class for the keyword_lookup module

Key Arguments:
* log —logger
* settings — the settings dictionary. Default False

* instrument — can directly add the instrument if settings file is not avalable. Default False

66 Chapter 2. How to cite soxspipe

../_api/soxspipe.commonutils.detector_lookup.html
../_api/soxspipe.commonutils.detector_lookup.html
../files/detector_parameters.html
../_api/soxspipe.commonutils.filenamer.html
../soxs_file_naming_scheme.html
../_api/soxspipe.commonutils.keyword_lookup.html
../_api/soxspipe.commonutils.keyword_lookup.html
../files/keyword_dictionary.html

soxspipe Documentation, Release v0.10.2

Usage

To initalise the keyword lookup object in your code add the following:

from soxspipe.commonutils import keyword_lookup
kw = keyword_lookup (

log=1log,

settings=settings,

instrument=False,
) .get

After this it’s possible to either look up a single keyword using it’s alias:

kw ("DET_NDITSKIP")
> "ESO DET NDITSKIP"

or return a list of keywords:

kw (["PROV", "DET_NDITSKIP"])
> ['PROV', 'ESO DET NDITSKIP']

For those keywords that require an index it’s possible to also pass the index to the kw function:

kw ("PROV", 9)
> 'PROV09'

If a tag is not in the list of FITS Header keyword aliases in the configuration file a LookupError will be
raised.

get (tag, index=False)
given a tag, and optional keyword index, return the FITS Header keyword for the selected instrument

Key Arguments:

* tag — the keyword tag as set in the yaml keyword dictionary (e.g. ‘SDP_KEYWORD_TMID’
returns ‘TMID’). Can be string or list of sttings.

* index —add an index to the keyword if not False (e.g. tag="PROV’, index=3 returns ‘PROV03’)
Default False

Return:

* keywords — the FITS Header keywords. Can be string or list of sttings depending on format of
tag argument

Usage

See docstring for the class

2.7.9 prepare_frames

The purpose of prepare_frames is to prepare the raw SOXS frames for data reduction.

Here’s the typical workflow for preparing the raw frames:

2.7. Utilities 67

../_api/soxspipe.recipes._base_recipe_.html#soxspipe.recipes._base_recipe_._base_recipe_.prepare_frames

soxspipe Documentation, Release v0.10.2

prepare_frames() - method

raw frame

is this xshooter data?

detector parameters p Trim the overscan
yaml regions of data

YES

run the xsh2soxs function to perform
actions specific to xshooter test data (to
be removed in production code)

convert data pixel units from
ADU counts to electrons
(correct for gain)

!

generate and append a
statistical error map as
'ERRS' extension

!

convert the the appropriate

bad-pixel map to a boolaen 4

mask and append as a 'QUAL'
extenison

!

Add the 'SOXSPIPE PRE"
keyword into frame header
to indicate the frame has
been 'prepared'

write the 'pre' frame to disk at the 'intermediate-
data-root' path found in the settings file (writing of
intermediate products is optional)

bad pixel map

prepared-frames

68

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

1. Trim Overscan

The first thing we need to do is trim off the overscan area of the image. The science-pixel regions for the detectors are
read from the Detector Parameters file.

2. ADU to Electrons
Next the pixel data is converted from ADU to electron counts by multiplying each pixel value in the raw frame by the
detector gain (the gain is read in units of electrons/ADU).

electron count = adu count x gain

3. Generating an Uncertainty Map
Next an uncertainty map is generated for the raw image and added as the ‘ERR’ extension of the image.
4. Bad Pixel Mask

The default detector bitmap is read from the static calibration suite and converted to a boolean mask, with values >0
becoming TRUE to indicate these pixels need to be masks. All other values are set to FALSE. This map is add as the
‘QUAL’ extesion of the image.

Finally the prepared frames are saved out into the intermediate frames location with the prefix pre_.

Viewing the image in DS9 (using the command ds9 -multiframe -tile columns pre_filename.fits
to show all extensions as tiled frames) we can see the ‘FLUX’, ‘QUAL’ and ‘ERR’ extensions are now all present.

2.7. Utilities 69

../files/detector_parameters.html

soxspipe Documentation, Release v0.10.2

L @ SAOImage ds9
File master_bias_UVB_1x1.fits[QUAL]
Object
Value
WCS
Physical X h
Image X Y
Frame 2 ® 1.000 0.000 e
file edit view frame bin zoom m color region (0] analysis help

| linear | squared histogram minmax (SCRS

1753 1754 1756 1757 1758 1759 1781 1762 1763

_base_recipe_.prepare_frames (save=False)
prepare raw frames by converting pixel data from ADU to electrons and adding mask and uncertainty extensions

Key Arguments:

* save — save out the prepared frame to the intermediate products directory. Default False.
Return:

e preframes — the new image collection containing the prepared frames

Usage

70 Chapter 2. How to cite soxspipe

https://live.staticflickr.com/65535/50237008782_5bb148baaf_o.png

soxspipe Documentation, Release v0.10.2

Usually called within a recipe class once the input frames have been selected and verified (see soxs_mbias
code for example):

self.inputFrames = self.prepare_frames (
save=self.settings["save-intermediate-products"])

2.7.10 set_of_files
The set_of_files utility helps to translate and homogenise various recipe input-frame lists. This allows recipes
to accept any of the following inputs:
¢ an ESORex-like sof file,
e adirectory of FITS files
* alist of fits file paths
Behind the scenes set_of_files converts the lists into a CCDProc ImageFileCollection.

Lines in a sof file beginning with a # are considered as comments and therefore ignored by the pipeline.

2.7.11 subtract_background

The purpose of the subtract_background utility is to model the topology of the scattered background light
within an image and then remove it.

Here’s the workflow for subtracting a frame’s background:

2.7. Utilities n

../_api/soxspipe.commonutils.set_of_files.html
../_api/soxspipe.commonutils.set_of_files.html
https://ccdproc.readthedocs.io/en/latest/api/ccdproc.ImageFileCollection.html
../_api/soxspipe.commonutils.subtract_background.html

soxspipe Documentation, Release v0.10.2

subtract_background()

Unpack the order location table, and create a mask
containing pixels lying within the order-locations. Extend
the mask in either direction along the y-axis by a given
fraction of its original length to make sure all inner-order
flux is masked.

|

Add the bad pixels to this inner-order mask.

!

For each row in the image, fit unmasked pixel-fluxes with a
bspline. From this fit, generate flux values for every pixel in
the row and add to a first pass model background image.

\

Apply a median-filter to the model image to remove any
structure resulting from a bad row fits.

|

subtract the background fit from the orginal input frame

\;

background image]4—

write out product
files

background subtracted

calibrated frame

order table from detect_order_edges

Here’s an example frame requiring the background scattered light to be fitted and removed:

72

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

1000

800 R S R SR e

600 e ———————— R

X-axis
18

400

200

0 250 500 750 1000 1250 1500 1750 2000
y-axis

Having unpacked the order location table, a mask is created containing pixels lying within the order-locations. The
mask is extended in either direction along the y-axis by a given fraction (recipe parameter) of its original length to
make sure all inner-order flux is masked.

1000 §

800 F

600

X-axis

400

200

0 250 o 500 750 1000 1250 1500 1750 2000
y-axis

The bad-pixel mask is merged with this inner-order mask. For each row in the masked frame, a bspline is fitted to the
unmasked pixel fluxes to model the shape of the scattered background light along the row.

2.7. Utilities 73

https://live.staticflickr.com/65535/51236661920_a034db6805_b.jpg
https://live.staticflickr.com/65535/51235592981_e42aafbe63_b.jpg

soxspipe Documentation, Release v0.10.2

0.06 |-

0.04 |-

flux

0.02 -

0.00 |-

L L L L L
0 200 400 600 800 1000
pixels along row

For each row, flux-values are generated for all pixels in the row using the bspline fit and added to a first pass model
background image.

1000

800

600

X-axis

400

200

0 250 500 750 1000 1250 1500 1750 2000
y-axis

It’s essential that background fitting is accurate within the order locations, but not outside of these areas, so there is no
cause for concern if the fit is poor at the edges and corners of the image.

A median-filter is applied to the image to remove the structure resulting from a bad row fits (light and dark lines along
the x-axis).

74 Chapter 2. How to cite soxspipe

https://live.staticflickr.com/65535/51234447259_1e10610df3_b.jpg
https://live.staticflickr.com/65535/51236365319_8578f5f4f9_b.jpg

soxspipe Documentation, Release v0.10.2

1000

800

600

X-axis

400

200

0 250 500 750 1000 1250 1500 1750 2000
y-axis

Finally, the modelled background image is subtracted from the original frame:

1000

800

600

X-axis

400

200

0 250 500 750 1000 1250 1500 1750 200

y-axis

2.7. Utilities 75

https://live.staticflickr.com/65535/51234884582_5fd181c063_b.jpg
https://live.staticflickr.com/65535/51236665480_2e269e7049_b.jpg

soxspipe Documentation, Release v0.10.2

2.7.12 detrend - SEMI-COMPLETED

For the UVB-VIS arm we will often need to scale the master-dark frame to match the exposure time of our sci-

ence/calibration frame. If this is the case than the master-bias frame needs to

be subtracted from the master-dark frame

before scaling. However, if the master-dark frame has the same exposure time as your science/calibration frame then it
can be subtracted directly from frame as this serves to remove the bias and dark-current contributions simultaneously.

This logic is all housed within the det rend method.

prepared science/calibraion frame

k with i . —
MESHAT GV (LD SEEmE fme iz —_—) detrend() L — prepared science/calibraion frame

than science/calibration frame

master bias frame

Does the exposure time of
the master darf frame match that of
the science/calibration
frame?

Has a master bias frame
been supplied?

exit with error

subtract the master bias frame
from both the science/calibration
frame and the master dark frame

|

scale the bias-subtracted master
dark frame to the same exposure
time as the science/calibration
frame

|

subtract the scaled frame from the
bias-subtracted science/
calibration frame

l

return dark and bias subtracted

master dark with expsoure time
equal to science/calibraion frame

subtract master dark frame from
— YES —> q q a
the science/calibration frame

science/calibration frame

76

Chapter 2. How to cite soxspipe

../_api/soxspipe.recipes._base_recipe_.html#soxspipe.recipes._base_recipe_._base_recipe_.detrend

soxspipe Documentation, Release v0.10.2

2.8 Files

Files generated by SOXSPIPE follow a strict naming scheme.

2.8.1 Product Files
2.8.2 Static Calibration Files

2.8.2.1 Pinhole Map

The Pinhole Map is a static calibration file that provides a list wavelength A, order number n and slit position s of the
arc-lines from a multi-pinhole exposure alongside a first approximation of their (X, Y) pixel-positions on the detector.

2.8.2.2 Detector Parameters
This is a yaml file hosting the fixed characteristics of the soxs detectors such as gain, science-pixel indexes and image
orientations.

Having these characteristics in a plain-text yaml file allows them to be abstracted from the main code and helps
maintain a single-source of truth.

2.8.2.3 Spectral Format Table

The spectral format tables are static calibration files that provide some overview information about how each order typ-
ically presents itself on the plain of the detector. Useful information includes the minimum and maximum wavelength
limits for each order. Here is an example of the XShooter UVB spectral format table contents:

ORDER, LAMP, WLMINFUL, WLMIN, WLMAX, WLMAXFUL, DISP_MIN,DISP_MAX, LFSR, UFSR
13,QTH,536.57666,544.63275,590.0,603.15594,19.0,2999.0,547.52716,591.32935
14,Q0TH,499.57135,505.7841,550.3,558.4777,120.0,2999.0,509.7667,547.52716

2.8.3 Intermediate Files

2.8.3.1 Master Bias

The master bias frames are the product of the soxs_mbias recipe. The master-bias frame is to be subtracted from
science/calibration frames to remove the contribution to pixel counts resulting from the bias-voltage.

2.8.3.2 Master Dark

The master dark frames are the product of the soxs_mdark recipe. The master-dark frame is to be subtracted from
science/calibration frames to remove the contribution to pixel counts resulting from the dark-current.

2.8. Files 77

../soxs_file_naming_scheme.html
https://yaml.org/
../_api/soxspipe.recipes.soxs_mbias.html
../_api/soxspipe.recipes.soxs_mdark.html

soxspipe Documentation, Release v0.10.2

2.8.3.3 Prepared Frame
2.8.3.4 Dispersion Map

In the case of soxs_disp_solution the output dispersion map hosts the coefficients (c;;) to two polynomials that
describe the global dispersion solution for the entire detector frame:

X:ZCin’rLiXAj
ij
Y:ZCinniXAj
j
soxs_spatial_ solution,building from this dispersion solution, provides global dispersion and spatial solution.
The dispersion map output by this recipe hosts the coefficients (c;;1) to two polynomials (note now the inclusion of
slit position):
X:ZCiij’ﬂiXAjXSk
ijk
Y:Zcijk xnt x N x s*
ijk

2.8.3.5 Order Table

The order table gets built over soxs_order_centres and soxs_mflat recipes. The final product contains
polynomial fits for the order centres and the upper and lower edges of the order locations on the detector.

Here is an example of the content of the NIR order table from the soxs_order_centres recipes.

order,degy, CENT_c0,CENT_cl,CENT_c2,CENT_c3
11,3,787.9616,0.387875383,-0.000175467653,7.67345562e-10
12,3,714.084224,0.392816612,-0.000177468713,1.24058095e-09

Todo:

* add order table example after soxs_mflat

2.9 Release Notes

2.9.1 v0.10.2 - April 23, 2024

* ENHANCEMENT: the calibration lamp name is now added to the sof filenames, and hence the product file
names

« ENHANCEMENT: file summary now shows which calibration lamps are used
« ENHANCEMENT: adding bad-pixel maps for SOXS detectors (currently blank)

« ENHANCEMENT: pipeline can select default settings for either soxs or xsh (previously there was only one
default settings file)

* FIXED: SOXS VIS darks are now getting split by EXPTIME in data-organiser

78 Chapter 2. How to cite soxspipe

../recipes/soxs_disp_solution.html
../recipes/soxs_spatial_solution.html
../recipes/soxs_order_centres.html
../recipes/soxs_mflat.html
../recipes/soxs_order_centres.html

soxspipe Documentation, Release v0.10.2

2.9.2 v0.10.1 - April 11, 2024
* FEATURE: the data-organiser has been ‘plumbed’ to work with SOXS data (will now work with Xshooter or
SOXS data).

« ENHANCEMENT: clipping of entire MPH set based on their combined RMS scatter from their predicted
locations. MPH sets with large scatter are consider poor and removed before polynomial fitting.

« ENHANCEMENT: option added to relevant recipes settings to allow toggling of fitting and subtracting of
intra-order scattered background light (subtract_background)

* REFACTOR: added arm and lamp to QC plot titles.

* REFACTOR recipe settings can now be set independently for each arm.

¢ REFACTOR: fitting of the scatter background light is now much more robust.

* REFACTOR: The scattered light background images are now saved as QC PDFs instead of FITS frames.
* FIXED: fixed issue where logs were getting duplicated.

* FIXED: the scaling and stitching together of the UVB D2 and QTH lamp flats.

2.9.3 v0.10.0 - February 20, 2024

* abootstrap_dispersion_solution has been added to the advanced settings. It this is set to True,
the pipeline will attempt to bootstrap the initial dispersion solution (using the static line list) with lines from a
line-atlas. The line-atlas contains more lines and lines with more precise wavelength measurements.

* FEATURE: a new ‘reducer’ module and terminal command replace the old _reduce_all/sh script. This
allows the data-organiser to dynamically self-correct if a recipe fails.

« ENHANCEMENT: robustness fixes and updates.

* pinhole_fwhm_px_minandpinhole_fwhm_px_max settings added to soxs-spatial-solution.
Detected pinholes with a FWHM below/above these values get clipped.

e FIXED: The bad-pixel mask from the noise map of the mbias frame is now injected mbias product. The
Xshooter UVB electron trap is now clearly visible in the master bias quality extension.

e mph_line_set_min setting added to soxs—-spatial-solution. Full multi-pinholes sets (same arc
line) with fewer than mph_line_set_min lines detected get clipped.

2.9.4 v0.9.9 - January 24, 2024

* FIXED: bug fix logger

2.9.5 v0.9.8 - January 19, 2024

* FIXED: bug fix in collecting settings files from the default location

2.9. Release Notes 79

soxspipe Documentation, Release v0.10.2

2.9.6 v0.9.7 - December 7, 2023

ENHANCEMENT: the instrument name is now included in the SOF & product filename.
ENHANCEMENT: setting bad pixels to zero in sky-subtracted product frames.
FIXED: blocking filters now taken into account when building the master-flats and determining the order-edges.

FIXED: master flats taken with blocking filters are no longer matched with multi-pinhole frames fro the spatial
solution recipe.

FIXED: master flats with identical slit-widths now matched against science frames within the data-organiser
when building SOF files.

FIXED: the order of the columns in the extracted & merged spectrum tables is now WAVE, FLUX (was FLUX,
WAVE).

FIXED: specutils dependency added to conda-forge requirements.

2.9.7 v0.9.4 - December 5, 2023

REFACTOR: orders are now clipped so that only the pixels deemed to be within the flux receiving regions of
the order are extracted (according to the static calibration spectral format table).

REFACTOR:soxspipe prep will now warn user if no FITS files are found in the workspace directory and
quit before moving any files (safer).

REFACTOR:soxspipe sessioncommands will look for a sessions directory before creating any new files
and folders (cleaner).

REFACTOR:read_spectral_format function can now return limits to the usable region of each spectral
order if a dispersion map is given.

FIXED: fixes to make detect_continuum more robust.

2.9.8 v0.9.2 - November 29, 2023

ENHANCEMENT: intra-order background (scattered light) fits are now being written to FITS image files in
the QC directories and reported at the end of a recipe run.

ENHANCEMENT: added a create_dispersion_solution_grid_lines_for_plot function to
allow adding dispersion solution grid to QC plots. This is extremely useful for quickly diagnosing problems
with the fits.

REFACTOR: All product FITS files now pass fitverify without error or warnings. All issues were due to using
‘-* instead of underscores in FITS binary table column names.

REFACTOR: bad-pixel values set to 0 in data extensions of products
REFACTOR: nans have been replaced by zero in FITS image product

FIXED: a mismatch between daofind results and the original input pixel table was causing dispersion solution
to break (a recent bug introduced during code optimisations)

FIXED: the internal soxspipe logger was being interfered with by astropy so that logs were sometimes getting
redirected to the wrong place

80

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

2.9.9 v0.9.0 - October 11, 2023
* FEATURE: added a predict_product_path function to determine the product path from a recipe’s input
sof file

* FEATURE: Merging of individual order extracted spectra from object frame into a single spectrum for each
arm

* FEATURE: Object spectra are now extracted from the sky-subtracted frames using the Horne 86 method

* FEATURE: Real SOXS data is now included in the unit-test suite (starting to replace simulated data unit-tests).
soxs—disp-solu recipe so far.

* FEATURE: SOXS NIR Xe line-lists added to static-calibration suite (single and multi pinhole).

¢ FEATURE: when running a recipe, soxspipe writes informative logs to stdoutAND to a log file adjacent to
the recipe’s product file(s). Error logs are also written if a recipe fails (see docs).

* ENHANCEMENT: recipe timing added to the end of the logs
« ENHANCEMENT: fitted lines from the dispersion solution are written out to file as a QC product

« ENHANCEMENT: flux (and other daostarfinder metrics) are now recorded in the detected line-list QC file.
This will help measure degradation of arc-lamps over time.

« ENHANCEMENT: FWHM and pixel-scale added to fitted lines from the dispersion solution
* ENHANCEMENT: legends added to many of the QC plots
« ENHANCEMENT: OB ids now getting add to the data-organiser database tables.

« ENHANCEMENT: object trace FITS binary table added to stare-mode products (alongside complimentary QC
plot)

* ENHANCEMENT: products and QC outputs are differentiated in the table reported upon recipe completion
(see label column).

« ENHANCEMENT: verifying the master flat used to calibrate object/std spectra has the same slit-witdh as used
to take the science frames

e REFACTOR:init command has been subsumed into the prep command. The prep command will generate
a settings file to live within the prepared workspace.

* REFACTOR:misc/ directory created by data-organiser even if empty
* REFACTOR: close matplotlib plot after writing plots to file
* REFACTOR: command-line startup speeds improved

¢ REFACTOR: continuum fitting code made more robust against edge cases (orders of the fit are automatically
reduced if fit does not converge)

* REFACTOR: soxspipe now has a ‘full’ and a ‘lite’ test-suite. Using the lite suite will speed up deploying of
new releases.

¢ DOCS: updated docs with a more robust SOXSPIPE upgrade path (users having issue with conda update
-)

* FIXED: sky-subtraction code and data-organiser fixed to work with binned data

2.9. Release Notes 81

soxspipe Documentation, Release v0.10.2

2.9.10 v0.8.0 - May 18, 2023

FEATURE: we now have a data-organiser to sort data, prepare the required SOF files and generate reduction
scripts.

ENHANCEMENT: ‘.db’, “.yaml’, ‘.sh’ and ‘.log’ extensions skipped when moving items to the misc folder

ENHANCEMENT: move information printed to STDOUT when preparing a workspace to inform the user of
how the data is organised

ENHANCEMENT: code can automatically adjust polynomial fitting parameters to find a dispersion solution if
those provided in the settings file fail.

ENHANCEMENT: uncompression of fits.Z files (if any) occurs before data-organising
REFACTOR: speed & robustness improvements to dispersion solution to 2D image map conversion.
REFACTOR: much fast check for product existence so recipes are quickly skipped if they have already run.

REFACTOR: removed the intermediate-data-root setting renamed to a more accurate
workspace-root-dir

REFACTOR: removed the reduced-data-root setting.

REFACTOR: updating all depreciated pandas commands so pipeline is now compatible with 1.X and 2.X
versions of pandas

FIXED pandas 1.X and pandas 2.X were doing different things when renaming columns in data-frames. Both
1.X and 2.X now work in the pipeline.

2.9.11 v0.7.2 - March 3, 2023

* REFACTOR: Big improvements on sky-subtraction

* REFACTOR: UV order-edge detection more robust

¢ REFACTOR: changed quickstart guide compress to gzipped tar
* REFACTOR: updated default settings to be more robust

2.9.12 v0.7.1 - November 4, 2022

FEATURE: UV D-Lamp and QTH-Lamp master flats now being stitched together
FEATURE: errors in error maps now being treated correctly and propagating to combined images

FEATURE: Pipeline can now ‘remember’ where it left off in the reduction cascade. If it has run a recipe before
it will exit with a message to the user informing them how to force the recipe to rerun.

FEATURE: added a twoD_disp_map_image_to_dataframe function to toolkit
ENHANCEMENT: PRO CATG now written to product FITS header
ENHANCEMENT: Handling of binned images when generating flats and order-locations

ENHANCEMENT: Where possible, product files are given the same name as the SOF file used to generate
them (replacing . sof extension with . fits)

ENHANCEMENT: SOF files can now contain a file ‘tag’ to allow users to read the SOF file contents and know
exactly which files are being passed to the recipe (e.g. MASTER_BIAS_UVB, LAMP, DORDERDEF_UVB...)

ENHANCEMENT: dispersion solution now working with simulated NIR SOXS data

82

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

ENHANCEMENT: quicklook now renders dispersion solution grid
ENHANCEMENT: ~40% speed gain in combining images.

REFACTOR: 2D Map generation now ~6-8 times faster (seeding solutions with nearest neighbour with cubic
spline method)

REFACTOR: SOF filenames reworked to contain the UTC observation date instead of MJD (more in-line with
ESO ecosystems)

REFACTOR: updated workflow for master bias combination

REFACTOR: updated workflow for master dark combination

REFACTOR: QC PDF plots now added to their own directory separate from the products
REFACTOR: products now sub-divided into recipe directories (e.g. . /products/soxs—-mbias/)
DOCS: mflat docs brought up-to-date

DOCS: mflat docs brought up-to-date

FIXED: mflat recipe now exits if flat frames are not of a consistent exptime.

2.9.13 v0.6.2 - April 13, 2022

ENHANCEMENT: quickstart guide added for calibration recipes
FEATURE: QCs added for dispersion solution and order centre recipes
REFACTOR: clean up of stdout information

2.9.14 v0.6.1 - April 11, 2022

FEATURE: shipping static calibration files with the code (one less thing for end-users to install and set-up)

2.9.15 v0.6.0 - April 10, 2022

This is only a summary of some of the updates included in this release:

ENHANCEMENT: All CSV files moved to FITS binary tables - metadata very useful for developing data
organiser

FEATURE: 2D image map now created by create_dispersion_solution subtract_calibrations util re-
named to det rend and added ability to flat correct

FEATURE: 2D image map of wavelength values, slit-position values and order values written alongside poly-
nomial solutions of full dispersion solution

FEATURE: soxspipe now on conda

FEATURE: QCs now being written to FITS header

FEATURE: adding QC and product collection in mbias recipe

ENHANCEMENT RON and bias structure QCs now reported by mbias

ENHANCEMENT nan ignored when scaling quicklook images

ENHANCEMENT RON and bias structure QCs now reported by mdark

ENHANCEMENT: QCs have an option to NOT (to_header) write to FITS header (default is to write)

2.9. Release Notes 83

soxspipe Documentation, Release v0.10.2

REFACTOR: better treatment of masked pixels when stacking images (e.g. in mbias and mdark)
REFACTOR: removed raw frame reports and neater QC table
REFACTOR: fits header keywords neatly sorted before writing to file

FIX: Correct management of mask when determining RON on bias and darks

2.9.16 v0.5.1 - September 29, 2021

FEATURE: recipes now have a gc and product s attribute. These are pandas data frames used to collect QCs
and generated products throughout the life-time of the recipe. They are printed to STDOUT at the end of the
recipe (can be used in the future to send post request to health monitor API with JSON content in request body).

ENHANCEMENT added code-base to conda-forge

ENHANCEMENT added bottleneck to the install requirement (makes image combination more efficient)
ENHANCEMENT masked pixel now coloured red in quicklook plots (easier to differentiate from good pixels)
ENHANCEMENT low-sensitivity pixels in lamp-flats now identified and added to bad-pixel mask
ENHANCEMENT add a verbosity flag to the command-line and a verbose parameter to each recipe

REFACTOR inter-order pixel value in flats now set to unity (instead of running background fitting and subtrac-
tion)

REFACTOR: recipes now have their recipe name as a recipeName attribute

2.9.17 v0.5.0 - June 10, 2021

FEATURE Added a new filenamer module that implements a strict intermediate and reduced file-naming
scheme

FEATURE:soxs_mflat recipe now included
FEATURE:soxs_spatial_solution recipe is now included
FEATURE:subtract_background utility added
FEATURE: added a detect_order_edges object

FEATURE: Added a dispersion_map_to_pixel_arrays function to convert from order-based and
wavelength arrays to pixel arrays (first guess dispersion map only so far)

FEATURE: added a quicklook function in toolkit to quickly visualise a frame

FEATURE: added a toolkit module for small functions used throughout soxspipe

FEATURE: added function in toolkit to unpack an order table into lists of coordinates, one list per order.
FEATURE: added image slice tool to toolkit

ENHANCEMENT Added a -0 <outputDirectory> switch to the command-line to optionally override
the ‘intermediate-data-root’ setting in the settings file.

ENHANCEMENT: added a fraction of a second tolerance when matching exptimes between darks and sci-
ence/calibration frames

ENHANCEMENT: y limits now added to the order table to show limits of order locations on detector

REFACTOR: Change the “SOXSPIPE PRE” date stamp keyword to “SXSPRE” to future-proof for phase III
(8 character keyword limit)

84

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

REFACTOR: Pandas tables are now used through-out code to pass line-lists between methods

REFACTOR: refactoring of polynomial fitting has made creation of dispersion maps ~50 times faster

REFACTOR: removed OBID from file names and added readout mode. This information is more helpful at the
glance.

FIXED: correct binning reported in product file names

FIXED: lines in a sof file beginning with a # are considered as comments and therefore ignored by the pipeline.

2.9.18 v0.4.1 - September 15, 2020

¢ FEATURE: add command-line util for soxs order_centres recipe

* FEATURE added the detect_cont inuum utility to fit order centre locations in single pinhole flat frames.
« ENHANCEMENT: added a supplementary file list for non-fits input files in set-of-file util

« ENHANCEMENT: adding more information residual plots & visualisation of fitting for disp solution

« ENHANCEMENT: check that files in the sof files exist before proceeding.

* ENHANCEMENT: added spectral format table lookup to detector settings file

¢« REFACTOR: moved chebyshev order/wavelength polynomials into its own class - decoupled from cre-
ate_dispersion_map class

2.9.19 v0.4.0 - September 3, 2020

e FEATURE: added create_dispersion_map class to be used in soxs_disp_solution and
soxs_spatial_solution

* FEATURE: added a det rend method to subtract calibration frames (bias and dark) from an input frame
* FEATURE: added the dispersion solution recipe and unit tests

* FEATURE: added the disp_solution command-line tool

¢ DOCS: major docs overhaul

« ENHANCEMENT: added predicted lines lists to detector parameter file

« ENHANCEMENT: DPR CATG and DPR TECH added to metadata of sof imagefilecollection objects

* ENHANCEMENT: wcs copied from a single frame into the combined frames during clip and stack

¢ REFACTOR: bad-pixel map paths abstracted to detector settings files

¢ REFACTOR: renaming of unit-testing test data directories

¢ REFACTOR: only filenames reported by sof summaries when files are found in the same directory (easier to
read on terminal)

» FIXED: fixed detector science pixels for UVB

2.9. Release Notes 85

soxspipe Documentation, Release v0.10.2

2.9.20 v0.3.1 - August 25, 2020

¢ FEATURE: recipe & command-line tool for master dark creation (mdark)
« ENHANCEMENT: default binning add to detector settings file
« ENHANCEMENT: added mixed exposure time unit test for dark-frames

¢ ENHANCEMENT: added default values for gain and ron in the detector settings files. Default values can be
overwritten if correct GAIN and RON are found in fits-headers (overwritten for UVB and VIS but not NIR for
XShooter)

* ENHANCEMENT: can now interrupt “~” as home directory in sof file path
* FIXED: binning factor used when trimming frames
* FIXED: the trimming dimensions of NIR frames - bad-pixel map now aligns correctly with data frame

* FIXED: science pixels for all 3 xshooter detectors in parameters file

2.9.21 v0.3.0 - August 18, 2020

e FEATURE: added a write method to the _base_recipe to write frames to disk (renames extensions to
ESO preferred naming scheme)

* FEATURE: detector lookup class added alongside yaml files to host detector specific parameters (rotation,
science-pixels etc). Code has been updated to remove hard-wired detector values.

¢ FEATURE: added a cleanup method to remove intermediate file once recipe completes
« ENHANCEMENT: parameters for clip and stack method added to the settings files

« ENHANCEMENT: added strict typing of data and variables with astropy units to avoid silent mistakes in frame
arithmetic

« ENHANCEMENT: added mixing of readout speeds to input frame verification checks

« ENHANCEMENT: added readnoise and gain to the list of keyword values to check during frame verification
« ENHANCEMENT: inject a ‘SOXSPIPE PRE’ keyword with timestamp value into prepared frames

* ENHANCEMENT: check frames for ‘SOXSPIPE PRE’ keyword before preparing - raises exception if found

« ENHANCEMENT: ron and gain are added to the recipe’s detector lookup dictionary during frame verification
(so they don’t need read again later)

* REFACTOR: moved stacking code to it own clip_and_stack method hosted in the _base_recipe
* REFACTOR: moved basic input frame verifications to the _base_recipe - so not to repeat code
¢ REFACTOR: removed python 2.7 support - not feasible with CCDProc

* DOCS: added workflow diagrams to the documentation for many of the methods implemented
(prepare_frames (), clip_and_stack)

86 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

2.9.22 v0.2.0 - February 27, 2020

* FEATURE added keyword lookups - abstracting exact keyword names from code

2.10 Modules

soxspipe.commonutils common tools used throughout package

soxspipe.recipes The pipeline recipes

soxspipe.commonutils.polynomials definition of polynomial functions needed throughout
code

soxspipe.commonutils.toolkit small reusable functions used throughout soxspipe

soxspipe.utKit Unit testing tools

2.10.1 commonutils (module)

common tools used throughout package

Classes

create_dispersion_map(log, settings, ...[,...])

detect arc-lines on a pinhole frame to generate a disper-
sion solution

data_organiser(log, rootDir)

The worker class for the data_organiser module

detect_cont inuum(log, pinholeFlat, ...[,...])

*find and fit the continuum in a pinhole flat frame with
low-order polynomials.

detect_order_edges(log, flatFrame, ...[,...])

using a fully-illuminated slit flat frame detect and record
the order-edges

detector_lookup(logl, settings])

return a dictionary of detector characteristics and pa-
rameters

flux_calibration(log, responseFunction, ...)

The worker class for the flux_calibration module

horne_extraction(log, settings, ...[,...])

perform optimal source extraction using the Horne
method (Horne 1986)

keyword_lookup(log|, instrument, settings])

The worker class for the keyword_lookup module

reducer(log, workspaceDirectory[, settings, ...])

reduce all the data in a workspace, or target specific obs
and files for reduction

response_function(log, stdExtractionPathl, ...])

The worker class for the response_function module

subtract_background(log, frame, orderTable)

fit and subtract background flux from scattered light
from frame

subtract_sky(log, settings, recipeSettings, ...)

Subtract the sky background from a science image using
the Kelson Method

2.10. Modules

87

soxspipe Documentation, Release v0.10.2

Functions
dispersion_map_to_pixel_arrays(log, ...[, use a first-guess dispersion map to append x,y fits to
)] line-list data frame.

filenamer(log, frame[, keywordLookup, ...])

Given a FITS object, use the SOXS file-naming scheme
to return a filename to be used to save the FITS object
to disk

getpackagepath()

Get the root path for this python package

uncompress(log, directory)

uncompress ESO fits.Z frames

2.10.2 recipes (module)

The pipeline recipes

Classes

soxs_disp_solution(logl, settings, ...])

generate a first approximation of the dispersion solution
from single pinhole frames

soxs_mbias(logl, settings, inputFrames, ...])

The soxs_mbias *recipe is used to generate a master-
bias frame from a set of input raw bias frames.

soxs_mdark(log[, settings, inputFrames, ...])

The soxs_mdark recipe

soxs_mflat(log[, settings, inputFrames, ...])

The soxs_mflat recipe

soxs_order_centres(logl, settings, ...])

The soxs_order_centres recipe

soxs_spatial_solution(logl, settings,...])

The soxs_spatial_solution recipe

soxs_stare(log[, settings, inputFrames, ...])

The soxs_stare recipe

soxs_straighten(logl, settings, ...])

The soxs_straighten recipe

2.10.3 polynomials (module)

definition of polynomial functions needed throughout code

Author David Young
Date Created September 10, 2020

Classes

chebyshev_order_wavelength_polynomials(l6g chebyshev polynomial fits for the single frames; to

)

be iteratively fitted to minimise errors

chebyshev_order_xy_polynomials(log, ...[,
..D

the chebyshev polynomial fits FIX ME

chebyshev_xy_polynomial(log, y_deg[, yCol,
)

the chebyshev polynomial fits for the pinhole flat frame
order tracing; to be iteratively fitted to minimise errors

object() The base class of the class hierarchy.
continues on next page
88 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

Table 5 — continued from previous page

tools(arguments, docString[, logLevel, ...])

common setup methods & attributes of the main function
in cl-util

2.10.4 toolkit (module)

small reusable functions used throughout soxspipe
Author David Young
Date Created September 18, 2020

Classes

MaxFilter(max_level)

chebyshev_order_xy_polynomials(log, ...[,

D

the chebyshev polynomial fits FIX ME

chebyshev_xy_polynomial(log, y_deg[, yCol,
)

the chebyshev polynomial fits for the pinhole flat frame
order tracing; to be iteratively fitted to minimise errors

datet ime(year, month, day[, hour[, minute[, ...)

The year, month and day arguments are required.

detector_lookup(log[, settings])

return a dictionary of detector characteristics and pa-
rameters

keyword_lookup(log[, instrument, settings])

The worker class for the keyword_lookup module

object()

The base class of the class hierarchy.

tools(arguments, docString[, logLevel, ...])

common setup methods & attributes of the main function
in cl-util

Functions

add_recipe_logger(log, productPath)

add a recipe-specific handler to the default logger that
writes the recipe’s logs adjacent to the recipe project

create_dispersion_solution grid_1lines_ fgivemldispersjon solution and accompanying 2D dis-

persion map image, generate the grid lines to add to
QC plots

cut_image_s1ice(log, frame, width, length, x, y)

cut and return an N-pixel wide and M-pixels long slice,
centred on a given coordinate from an image frame

dispersion_map_to_pixel_arrays(log, ...[, use a first-guess dispersion map to append x,y fits to
D line-list data frame.
expanduser(path) Expand :sub:® and “user constructions. If user or

$HOME is unknown, do nothing.

generic_quality checks(log, frame, settings,

)

measure very basic quality checks on a frame and return
the QC table with results appended

get_calibration_1lamp(log, frame, kw)

given a frame, determine which calibration lamp is be-
ing used

get_calibrations_path(log, settings)

return the root path to the static calibrations

predict_product_path(sofName[, recipeName])

predict the path of the recipe product from a given SOF
name

continues on next page

2.10. Modules

89

soxspipe Documentation, Release v0.10.2

Table 7 — continued from previous page

quicklook_image(log, CCDObject[, show, ext,
)

generate a quicklook image of a CCDObject - useful for
development/debugging

read_spectral_format(log, settings, arml, ...])

read the spectral format table to get some key parame-
ters

spectroscopic_image_quality checks(log,

)

measure and record spectroscopic image quailty checks

twoD_disp_map_image_to_datarframe(log,

LD

convert the 2D dispersion image map to a pandas
dataframe

unpack_order_table(log, orderTablePath[, ...])

*unpack an order table and return a top-level
orderPolyTable data-frame and a second
orderPixelTable data-frame with the central-
trace coordinates of each order given

2.10.5 utKit (module)

Unit testing tools

Classes

utKit(moduleDirectory[, dbConn])

Override dryx utKit

2.11 Classes

soxspipe.commonutils.
create _dispersion_map

detect arc-lines on a pinhole frame to generate a disper-
sion solution

soxspipe.commonutils.data_organiser

The worker class for the data_organiser module

soxspipe.commonutils.detect_continuum

*find and fit the continuum in a pinhole flat frame with
low-order polynomials.

soxspipe.commonutils.
detect_order_edges

using a fully-illuminated slit flat frame detect and record
the order-edges

soxspipe.commonutils.detector_lookup

return a dictionary of detector characteristics and pa-
rameters

soxspipe.commonutils.flux_calibration

The worker class for the flux_calibration module

soxspipe.commonutils.horne_extraction

perform optimal source extraction using the Horne
method (Horne 1986)

soxspipe.commonutils.keyword lookup

The worker class for the keyword_lookup module

soxspipe.commonutils.polynomials.
chebyshev_order_wavelength polynomials

the chebyshev polynomial fits for the single frames; to
be iteratively fitted to minimise errors

soxspipe.commonutils.polynomials.
chebyshev_order_xy_polynomials

the chebyshev polynomial fits FIX ME

soxspipe.commonutils.polynomials.
chebyshev_xy_polynomial

the chebyshev polynomial fits for the pinhole flat frame
order tracing; to be iteratively fitted to minimise errors

soxspipe.commonutils.reducer

reduce all the data in a workspace, or target specific obs
and files for reduction

soxspipe.commonutils.
response_function

The worker class for the response_function module

continues on next page

90

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

Table 9 — continued from previous page

soxspipe.commonutils. fit and subtract background flux from scattered light
subtract_background from frame
soxspipe.commonutils.subtract_sky Subtract the sky background from a science image using
the Kelson Method
soxspipe.commonutils.toolkit.
MaxFilter
soxspipe.recipes.soxs_disp_solution generate a first approximation of the dispersion solution
from single pinhole frames
soxspipe.recipes.soxs_mbias The soxs_mbias *recipe is used to generate a master-
bias frame from a set of input raw bias frames.
soxspipe.recipes.soxs_mdark The soxs_mdark recipe
soxspipe.recipes.soxs_mflat The soxs_mflat recipe
soxspipe.recipes.soxs_order_centres The soxs_order_centres recipe
soxspipe.recipes. The soxs_spatial_solution recipe
soxs_spatial_solution
soxspipe.recipes.soxs_stare The soxs_stare recipe
soxsplpe.recipes.soxs_straighten The soxs_straighten recipe

2.11.1 create_dispersion_map (class)

class create_dispersion_map (log, settings, recipeSettings, pinholeFrame, firstGuessMap=~False,

orderTable=False, qclable=False, productsTable=False, sof-
Name=False, create2DMap=True)

Bases: object

detect arc-lines on a pinhole frame to generate a dispersion solution

Key Arguments:

Usage:

log —logger

settings — the settings dictionary

recipeSettings — the recipe specific settings
pinholeFrame — the calibrated pinhole frame (single or multi)

firstGuessMap — the first guess dispersion map from the soxs_disp_solution recipe
(needed in soxs_spat_solution recipe). Default False.

orderTable — the order geometry table

gcTable — the data frame to collect measured QC metrics
productsTable —the data frame to collect output products
sofName — name of the originating SOF file

create2DMap — create the 2D image map of wavelength, slit-position and order from disp solution.

from soxspipe.commonutils import create_dispersion_map
mapPath, mapImagePath, res_plots, gcTable, productsTable = create_dispersion_map (
log=1log,
settings=settings,
pinholeFrame=frame,
firstGuessMap=False,

(continues on next page)

2.11. Classes 91

soxspipe Documentation, Release v0.10.2

(continued from previous page)

gcTable=self.qgc,
productsTable=self.products
) .get ()

Methods

calculate_residuals(orderPixelTable, xco- calculate residuals of the polynomial fits against the

eff,...) observed line positions
convert_and_fit(order, bigWlArray, ...[, convert wavelength and slit position grids to pixels
plots])

create_new_static_line_1l1ist(dispersionMapBatlg)a first pass dispersion solution, use a line at-
las to generate a more accurate and more complete
static line list

create_placeholder_images([order, plot, create CCDData objects as placeholders to host the

reverse]) 2D images of the wavelength and spatial solutions

from dispersion solution map
detect_pinhole_arc_line(predictedLinel, detect the observed position of an arc-line given the
iraf]) predicted pixel positions

fit_polynomials(orderPixelTable, ...[,...]) iteratively fit the dispersion map polynomials to the
data, clipping residuals with each iteration

get() generate the dispersion map

get_predicted_line_1list() lift the predicted line list from the static calibrations

map_to_image(dispersionMapPath) convert the dispersion map to images in the detec-
tor format showing pixel wavelength values and slit
positions

order_to_image(orderInfo) convert a single order in the dispersion map to wave-

length and slit position images
write_map_to_file(xcoeff, ycoeff, orderDeg, write out the fitted polynomial solution coefficients to

) file

calculate_residuals (orderPixellable, xcoeff, ycoeff, orderDeg, wavelengthDeg, slitDeg, write-

QCs=False, pixelRange=False)
calculate residuals of the polynomial fits against the observed line positions

Key Arguments:
e orderPixelTable — the predicted line list as a data frame
* xcoeff —the x-coefficients
e ycoeff — the y-coefficients
* orderDeg — degree of the order fitting
* wavelengthDeg — degree of wavelength fitting
* slitDeg —degree of the slit fitting (False for single pinhole)
e writeQCs — write the QCs to dataframe? Default False

* pixelRange — return centre pixel and +- 2nm from the centre pixel (to measure the pixel scale)

Return:

* residuals - combined x-y residuals

92 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

* mean — the mean of the combine residuals
* std - the stdev of the combine residuals
* median — the median of the combine residuals
convert_and_fit (order, bigWiArray, bigSlitArray, slitMap, wlMap, iteration, plots=False)
convert wavelength and slit position grids to pixels
Key Arguments:
* order — the order being considered
* bigWlArray — 1D array of all wavelengths to be converted
* bigSlitArray — 1D array of all split-positions to be converted (same length as bigWlArray)
* slitMap - place-holder image hosting fitted pixel slit-position values
* wlMap — place-holder image hosting fitted pixel wavelength values
* iteration —the iteration index (used for CL reporting)
* plots — show plot of the slit-map
Return:
* orderPixelTable — dataframe containing unfitted pixel info
* remainingCount —number of remaining pixels in orderTable

Usage:

orderPixelTable = self.convert_and_fit(
order=order, bigWlArray=bigWlArray, bigSlitArray=bigSlitArray,
—slitMap=slitMap, wlMap=wlMap)

create_new_static_line_1list (dispersionMapPath)
using a first pass dispersion solution, use a line atlas to generate a more accurate and more complete static

line list

Key Arguments:

- “dispersionMapPath™ —-- path to the first pass dispersion solution

Return:

- "newPredictedLinelist®™ —-- a new predicted line list (to replace the static

—calibration line-1list)

create_placeholder_images (order=False, plot=False, reverse=False)
create CCDData objects as placeholders to host the 2D images of the wavelength and spatial solutions
from dispersion solution map

Key Arguments:

* order - specific order to generate the placeholder pixels for. Inner-order pixels set to NaN, else
set to 0. Default False (generate all orders)

* plot — generate plots of placeholder images (for debugging). Default False.
* reverse — Inner-order pixels set to 0, else set to NaN (reverse of default output).
Return:

* slitMap — placeholder image to add pixel slit positions to

2.11.

Classes 93

soxspipe Documentation, Release v0.10.2

* wlMap — placeholder image to add pixel wavelength values to

Usage:

slitMap, wlMap, orderMap = self._create_placeholder_images (order=order)

detect_pinhole_arc_line (predictedLine, iraf=True)
detect the observed position of an arc-line given the predicted pixel positions

Key Arguments:
* predictedLine —single predicted line coordinates from predicted line-list
e iraf —use IRAF star finder to generate a FWHM

Return:

* predictedLine — the line with the observed pixel coordinates appended (if detected, other-
wise nan)

fit_polynomials (orderPixelTable, wavelengthDeg, orderDeg, slitDeg, missingLines=False)
iteratively fit the dispersion map polynomials to the data, clipping residuals with each iteration

Key Arguments:

* orderPixelTable — data frame containing order, wavelengths, slit positions and observed
pixel positions

* wavelengthDeg — degree of wavelength fitting
* orderDeg — degree of the order fitting
* slitDeg — degree of the slit fitting (O for single pinhole)

* missingLines — lines not detected on the image

* xcoeff — the x-coefficients post clipping

* ycoeff —the y-coefficients post clipping

* goodLinesTable — the fitted line-list with metrics

* clippedLinesTable — the lines that were sigma-clipped during polynomial fitting

get ()
generate the dispersion map

Return:

* mapPath — path to the file containing the coefficients of the X,y polynomials of the global dis-
persion map fit

get_predicted_line_list ()
lift the predicted line list from the static calibrations

Return:

* orderPixelTable - a panda’s data-frame containing wave-
length,order,slit_index,slit_position,detector_x,detector_y

map_to_image (dispersionMapPath)
convert the dispersion map to images in the detector format showing pixel wavelength values and slit
positions

Key Arguments:

94 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

* dispersionMapPath — path to the full dispersion map to convert to images
Return:

* dispersion_image_filePath — path to the FITS image with an extension for wavelength
values and another for slit positions

Usage:

mapImagePath = self.map_to_image (dispersionMapPath=mapPath)

order_to_image (orderlnfo)
convert a single order in the dispersion map to wavelength and slit position images

Key Arguments:

* orderInfo —tuple containing the order number to generate the images for, the minimum wave-
length to consider (from format table) and maximum wavelength to consider (from format table).

Return:
* slitMap - the slit map with order values filled
* wlMap — the wavelengths map with order values filled

Usage:

slitMap, wlMap = self.order_to_image (order=order,minWl=minWl, maxWl=maxWl)

write_map_to_file (xcoeff, ycoeff, orderDeg, wavelengthDeg, slitDeg)
write out the fitted polynomial solution coefficients to file

Key Arguments:

* xcoeff — the x-coefficients

* ycoeff —the y-coefficients

* orderDeg — degree of the order fitting

* wavelengthDeg — degree of wavelength fitting

* slitDeg —degree of the slit fitting (False for single pinhole)
Return:

* disp_map_path — path to the saved file

2.11.2 data_organiser (class)
class data_organiser (log, rootDir)
Bases: object
The worker class for the data_organiser module
Key Arguments:
* log—logger
e rootDir — the root directory of the data to process
Usage:

To setup your logger, settings and database connections, please use the fundamentals package (see tutorial
here).

2.11. Classes 95

http://fundamentals.readthedocs.io/en/latest/#tutorial
http://fundamentals.readthedocs.io/en/latest/#tutorial

soxspipe Documentation, Release v0.10.2

To initiate a data_organiser object, use the following:

Todo:
 create cl-util for this class
e add a tutorial about data_organiser to documentation

e create a blog post about what data_organiser does

from soxspipe.commonutils import data_organiser
do = data_organiser (

log=1log,

rootDir="/path/to/workspace/root/"
)

do.prepare ()

Methods

categorise_frames(filteredFrames[, verbose]) given a dataframe of frame, categorise frames into
raw, reduced pixels, reduced tables

create_directory_table(pathToDirectory, create an astropy table based on the contents of a
) directory
generate_sof_and_product_names(series, add a recipe name and SOF filename to all rows in
) the raw_frame_sets DB table
populate_products_table(series, reduc- determine what the products should be for a given
tionOrder) recipe and SOF file and ppulate the products table
prepare() Prepare the workspace for data reduction by gener-
ating all SOF files and reduction scripts.
session_create([sessionld]) create a data-reduction session with accompanying
settings file and required directories
session_list([silent]) list the sessions available to the user
session_refresh() refresh a session’s SOF file (needed if a recipe fails)
session_switch(sessionld) switch to an existing workspace data-reduction ses-
sion

symlink_session_assets_to_workspace_reowipk session QC, product, SOF directories,

database and scripts to workspace root
sync_sqgl_table_to_directory(directory, sync sql table content to files in a directory (add and
tableName) delete from table as appropriate)

categorise_frames (filteredFrames, verbose=False)
given a dataframe of frame, categorise frames into raw, reduced pixels, reduced tables

Key Arguments:
* filteredFrames — the dataframe from which to split frames into categorise.
* verbose — print results to stdout.

Return:
* rawFrames — dataframe of raw frames only

* reducedFramesPixels — dataframe of reduced images only

96 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

* reducedFramesTables — dataframe of reduced tables only

Usage:

rawFrames, reducedFramesPixels, reducedFramesTables
—frames (filteredFrames)

self.categorise_

create_directory_table (pathToDirectory, filterKeys)
create an astropy table based on the contents of a directory

Key Arguments:
* log —logger
* pathToDirectory — path to the directory containing the FITS frames
e filterKeys — these are the keywords we want to filter on later
Return

* masterTable — the primary dataframe table listing all FITS files in the directory (including indexes
on filterKeys columns)

e fitsPaths —asimple list of all FITS file paths

* fitsNames —a simple list of all FITS file name

Usage:
GENERATE AN ASTROPY TABLES OF FITS FRAMES WITH ALL INDEXES NEEDED
masterTable, fitsPaths, fitsNames = create_directory_table(
log=1log,
pathToDirectory="/my/directory/path",
keys=["file", "mjd-obs", "exptime","cdeltl", "cdelt2"],

filterKeys=["mJjd-obs", "exptime"]

generate_sof_ and_product_names (series, reductionOrder, rawFrames, calibrationFrames,

calibrationTables)
add a recipe name and SOF filename to all rows in the raw_frame_sets DB table

Key Arguments:
* series — the dataframe row/series to apply work on

Usage:

Todo:

* add usage info

usage code

populate_products_table (series, reductionOrder)
determine what the products should be for a given recipe and SOF file and ppulate the products table

Key Arguments:
* recipeName — the name of the recipe.
* sofName — the name of the sof file.

Return:

2.11. Classes 97

soxspipe Documentation, Release v0.10.2

’f None

Usage:

’usage code

Todo:
* add usage info
* create a sublime snippet for usage
* write a command-line tool for this method

* update package tutorial with command-line tool info if needed

prepare ()
Prepare the workspace for data reduction by generating all SOF files and reduction scripts.

session_create (sessionld=False)
create a data-reduction session with accompanying settings file and required directories

Key Arguments:
* sessionId- optionally provide a sessionld (A-Z, a-z 0-9 and/or _- allowed, 16 character limit)
Return:

* sessionId - the unique ID of the data-reduction session

Usage:
do = data_organiser (
log=1log,

rootDir="/path/to/workspace/root/"
)

sessionId = do.session_create(sessionId="my_supernova")

session_1list (silent=False)
list the sessions available to the user

Key Arguments:
* silent —don’t print listings if True

Return:
* currentSession — the single ID of the currently used session
* allSessions —the IDs of the other sessions

Usage:

from soxspipe.commonutils import data_organiser
do = data_organiser (

log=1log,

rootDir="."
)

currentSession, allSessions = do.session_list ()

98 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

session_refresh ()
refresh a session’s SOF file (needed if a recipe fails)

Key Arguments:

I |

Return:

[~ vone |

Usage:

’usage code

Todo:
* add usage info
* create a sublime snippet for usage
 write a command-line tool for this method

* update package tutorial with command-line tool info if needed

session_switch (sessionld)
switch to an existing workspace data-reduction session

Key Arguments:
e sessionId - the sessionld to switch to

Usage:

from soxspipe.commonutils import data_organiser
do = data_organiser (

log=1log,

rootDir="."

)

do.session_switch (mySessionId)

symlink session_assets_to_workspace_root ()
symlink session QC, product, SOF directories, database and scripts to workspace root

Key Arguments:

- |

Return:

’f None ‘

Usage:

’usage code

Todo:

2.11. Classes 99

soxspipe Documentation, Release v0.10.2

* add usage info
* create a sublime snippet for usage
* write a command-line tool for this method

* update package tutorial with command-line tool info if needed

sync_sql_table_to_directory (directory, tableName, recursive=False)
sync sql table content to files in a directory (add and delete from table as appropriate)

Key Arguments:

* directory — the directory of fits file to inspect.
* tableName — the sqlite table to sync.

* recursive —recursively dig into the directory to find FITS files? Default False.

Return:

— None

Usage:

do.sync_sqgl_table_to_directory('/raw/directory/', 'raw_frames',
—~recursive=False)

2.11.3 detect_continuum (class)

class detect_continuum (log, pinholeFlat, dispersion_map, settings=False, recipeSettings=False,

recipeName="False, qcTable=False, productsTable=False, sofName=False,
binx=1, biny=1, lampTag=False)

Bases: soxspipe.commonutils.detect_continuum._base_detect

find and fit the continuum in a pinhole flat frame with low-order polynomials. These polynominals are the central
loctions of the orders

Key Arguments:

log —logger
pinholeFlat — calibrationed pinhole flat frame (CCDObject)

dispersion_map — path to dispersion map csv file containing polynomial fits of the dispersion
solution for the frame

settings — the settings dictionary

recipeSettings — the recipe specific settings

recipeName — the recipe name as given in the settings dictionary
gcTable — the data frame to collect measured QC metrics
productsTable — the data frame to collect output products
sofName —- name of the originating SOF file

binx — binning in x-axis

biny — binning in y-axis

100

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

* lampTag — add this tag to the end of the product filename (Default False)

Usage:

To use the detect_continuum object, use the following:

detector = detect_continuum/(
log=1log,
pinholeFlat=pinholeFlat,
dispersion_map=dispersion_map,
settings=settings,
recipeName="soxs-order-centre"

)

order_table_path =

detector.get ()

from soxspipe.commonutils import detect_continuum

Methods

calculate_residuals(orderPixelTable, coeff,

)

calculate residuals of the polynomial fits against the
observed line postions

create_pixel_arrays()

create a pixel array for the approximate centre of
each order

fit_1d_gaussian_to_slice(pixelPostion)

cut a slice from the pinhole flat along the cross-
dispersion direction centred on pixel position, fit 1D
gaussian and return the peak pixel position

fit_global_polynomial(pixelList[, ax-

isACol, ...])

iteratively fit the global polynomial to the data, fit-
ting axisA as a function of axisB, clipping residuals
with each iteration

fit_order_polynomial(pixelList, order,...)

iteratively fit the dispersion map polynomials to the
data, clipping residuals with each iteration

get()

return the order centre table filepath

plot_results(orderPixelTable, ...)

generate a plot of the polynomial fits and residuals

write_order_table_to_file(frame,...)

write out the fitted polynomial solution coefficients to

file

calculate_residuals (orderPixelTuble,
QCs=Fualse)

coeff, axisACol,

axisBCol, orderCol=False, write-

calculate residuals of the polynomial fits against the observed line postions

Key Arguments:

* orderPixelTable — data-frame containing pixel list for given order

* coeff —the coefficients of the fitted polynomial

* axisACol —name of x-pixel column

* axisBCol —name of y-pixel column

* orderCol —name of the order column (global fits only)

e writeQCs — write the QCs to dataframe? Default False

Return:
e res — x residuals

e mean - the mean of the residuals

2.11.

Classes

soxspipe Documentation, Release v0.10.2

st d — the stdev of the residuals
median — the median of the residuals

xfit — fitted x values

create_pixel_ arrays ()
create a pixel array for the approximate centre of each order

Return:

orderPixelTable — a data-frame containing lines and associated pixel locations

fit_1d_gaussian_to_slice (pixelPostion)
cut a slice from the pinhole flat along the cross-dispersion direction centred on pixel position, fit 1D
gaussian and return the peak pixel position

Key Arguments:

Return:

pixelPostion — the X,y pixel coordinate from orderPixelTable data-frame (series)

pixelPostion —now including gaussian fit peak xy position

fit_global_polynomial (pixelList, axisACol="cont_x', axisBCol='cont_y', orderCol="order', ex-

ponentsincluded=False, writeQCs=False)

iteratively fit the global polynomial to the data, fitting axisA as a function of axisB, clipping residuals with
each iteration

Key Arguments:

Return:

pixellist — data-frame group containing X,y pixel array

exponentsIncluded — the exponents have already been calculated in the dataframe so no
need to regenerate. Default False

coef fs —the coefficients of the polynomial fit
pixelList —the pixel list but now with fits and residuals included

allClipped — data that was sigma-clipped

fit_order_ polynomial (pixelList, order, axisBDeg, axisACol, axisBCol, exponentsin-

cluded=False)

iteratively fit the dispersion map polynomials to the data, clipping residuals with each iteration

Key Arguments:

Return:

pixelList — data-frame group containing X,y pixel array

order — the order to fit

axisBDeg — degree for polynomial to fit

axisACol —name of columns containing axis to be fitted
axisBCol — name of columns containing free axis (values known)

exponentsIncluded — the exponents have already been calculated in the dataframe so no
need to regenerate. Default False

coeffs — the coefficients of the polynomial fit

pixelList —the pixel list but now with fits and residuals included

102

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

get ()
return the order centre table filepath

Return:

* order_table_path —file path to the order centre table giving polynomial coeffs to each order
fit

plot_results (orderPixelTable, orderPolyTable, clippedData)
generate a plot of the polynomial fits and residuals

Key Arguments:
* orderPixelTable — the pixel table with residuals of fits
* orderPolyTable — data-frame of order-location polynomial coeff
* clippedData — the sigma-clipped data
Return:
e filePath — path to the plot pdf
* orderMetaTable — dataframe of useful order fit metadata

write_order table_to_file (frame, orderPolyTable, orderMetaTable)
write out the fitted polynomial solution coefficients to file

Key Arguments:
* frame — the calibration frame used to generate order location data

* orderPolyTable — data-frames containing centre location coefficients (and possibly also or-
der edge coeffs)

e orderMetaTable — extra order meta data to be added in an extra FITS extension
Return:

* order_table_path — path to the order table file

2.11.4 detect_order_edges (class)

class detect_order_edges (log, flatFrame, orderCentreTable, settings=False, recipeSettings=False,
recipeName='"soxs-mflat’, verbose=False, qcTable=False, product-
sTable=False, tag=", sofName=False, binx=I1, biny=1, extend-

ToEdges=True, lampTag=False)
Bases: soxspipe.commonutils.detect_continuum._base_detect

using a fully-illuminated slit flat frame detect and record the order-edges
Key Arguments:
* log-logger
* settings — the settings dictionary
* recipeSettings — the recipe specific settings
e flatFrame — the flat frame to detect the order edges on
e orderCentreTable — the order centre table
* recipeName —name of the recipe as it appears in the settings dictionary

e verbose — verbose. True or False. Default False

2.11. Classes 103

soxspipe Documentation, Release v0.10.2

¢ gcTable — the data frame to collect measured QC metrics

* productsTable — the data frame to collect output products

* tag-e.g. _DLAMP’ to differentiate between UV-VIS lamps

* sofName — name of the originating SOF file

* binx — binning in x-axis

* biny — binning in y-axis

* extendToEdges —if true, extend the order edge tracing to the edges of the frame (Default True)
* lampTag — add this tag to the end of the product filename (Default False)

Usage:

Todo:

¢ add a tutorial about detect_order_edges to documentation

from soxspipe.commonutils import detect_order_edges
edges = detect_order_edges (
log=1log,
flatFrame=flatFrame,
orderCentreTable=orderCentreTable,
settings=settings,
recipeSettings=recipeSettings,
recipeName="soxs-mflat",
verbose=False,
gcTable=False,
productsTable=False,
extendToEdges=True,
lampTag=False
)
productsTable, gcTable, orderDetectionCounts = edges.get ()

Methods

calculate_residuals(orderPixelTable, coeff, calculate residuals of the polynomial fits against the

) observed line postions
determine_lower_upper_edge_pixel_posiframnspixe) postion somewhere on the trace of the
order centre, return the lower and upper edges of the

order
determine_order_flux_threshold(orderDatyetermine the flux threshold at the central column of
L) each order
fit_global_polynomial(pixelList[, ax- iteratively fit the global polynomial to the data, fit-
isACol, ...]) ting axisA as a function of axisB, clipping residuals

with each iteration
fit_order_polynomial(pixelList, order,...) iteratively fit the dispersion map polynomials to the
data, clipping residuals with each iteration
get() get the detect_order_edges object
plot_results(orderPixelTableUpper, ...) generate a plot of the polynomial fits and residuals
continues on next page

104 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

Table 13 — continued from previous page
write_order_table_to_file(frame,...) write out the fitted polynomial solution coefficients to

file

calculate_residuals (orderPixellable, coeff, axisACol, axisBCol, orderCol=False, write-

QCs=Fualse)
calculate residuals of the polynomial fits against the observed line postions

Key Arguments:

* orderPixelTable — data-frame containing pixel list for given order

* coeff —the coefficients of the fitted polynomial

* axisACol —name of x-pixel column

* axisBCol —name of y-pixel column

* orderCol —name of the order column (global fits only)

e writeQCs — write the QCs to dataframe? Default False
Return:

* res —Xx residuals

* mean — the mean of the residuals

* std — the stdev of the residuals

* median — the median of the residuals

* xfit —fitted x values

determine_ lower upper_ edge_pixel_positions (orderData)
from a pixel postion somewhere on the trace of the order centre, return the lower and upper edges of the
order

Key Arguments:
* orderData — one row in the orderTable
Return:
* orderData — orderData with upper and lower edge xcoord arrays added

determine order flux_threshold (orderData, orderPixelTable)
determine the flux threshold at the central column of each order

Key Arguments:

¢ orderData — one row in the orderTable

- ““orderPixelTable the order table containing pixel arrays

Return:
e orderData — orderData with min and max flux thresholds added

fit_global_polynomial (pixelList, axisACol='cont_x', axisBCol="cont_y', orderCol="order’, ex-

ponentsincluded=False, writeQCs=False)
iteratively fit the global polynomial to the data, fitting axisA as a function of axisB, clipping residuals with

each iteration

Key Arguments:

2.11. Classes 105

soxspipe Documentation, Release v0.10.2

* pixelLlist — data-frame group containing x,y pixel array

* exponentsIncluded — the exponents have already been calculated in the dataframe so no
need to regenerate. Default False

Return:
* coeffs —the coefficients of the polynomial fit
* pixelList — the pixel list but now with fits and residuals included
* allClipped — data that was sigma-clipped

fit_order_polynomial (pixelList, order, axisBDeg, axisACol, axisBCol, exponentsin-

cluded=False)
iteratively fit the dispersion map polynomials to the data, clipping residuals with each iteration

Key Arguments:
* pixellist — data-frame group containing x,y pixel array
* order —the order to fit
* axisBDeg — degree for polynomial to fit
* axisACol —name of columns containing axis to be fitted
* axisBCol —name of columns containing free axis (values known)

* exponentsIncluded — the exponents have already been calculated in the dataframe so no
need to regenerate. Default False

* coeffs — the coefficients of the polynomial fit
* pixelList —the pixel list but now with fits and residuals included

get ()
get the detect_order_edges object

Return:
* orderTablePath — path to the new order table

plot_results (orderPixelTableUpper, orderPixelTableLower, orderPolyTable, orderMetaTable,

clippedDataUpper, clippedDataLower)
generate a plot of the polynomial fits and residuals

Key Arguments:
* orderPixelTableUpper — the pixel table with residuals of fits for the upper edges
* orderPixelTableLower — the pixel table with residuals of fits for the lower edges
* orderPolyTable — data-frame of order-location polynomial coeff
* orderMetaTable — data-frame containing the limits of the fit
* clippedDataUpper — the sigma-clipped data from upper edge
* clippedDatalower — the sigma-clipped data from lower edge
Return:
e filePath — path to the plot pdf

write_order table_to_file (frame, orderPolyTable, orderMetaTable)
write out the fitted polynomial solution coefficients to file

106 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

Key Arguments:
* frame — the calibration frame used to generate order location data

* orderPolyTable — data-frames containing centre location coefficients (and possibly also or-
der edge coeffs)

e orderMetaTable — extra order meta data to be added in an extra FITS extension
Return:

* order_table_path — path to the order table file

2.11.5 detector_lookup (class)
class detector_lookup (log, settings=False)
Bases: object
return a dictionary of detector characteristics and parameters
Key Arguments:
* log—logger
* settings — the settings dictionary
Usage:

To initiate a detector_lookup object, use the following:

from soxspipe.commonutils import detector_lookup
detector = detector_lookup (
log=1log,
settings=settings
) .get ("NIR")
print (detector["science-pixels"])

Methods
get(arm) return a dictionary of detector characteristics and
parameters
get (arm)

return a dictionary of detector characteristics and parameters
Key Arguments:

* arm — the detector parameters to return

2.11. Classes 107

soxspipe Documentation, Release v0.10.2

2.11.6 flux_calibration (class)

class flux_calibration (log, responseFunction, extractedSpectrum, settings=False)

Bases: object

The worker class for the flux_calibration module

Key Arguments:
* log —logger
e responseFunction — the instrument response function.
* extractedSpectrum - the extracted science spectrum
* settings — the settings dictionary

Usage:

To setup your logger, settings and database connections, please use the fundamentals package (see tutorial

here).

To initiate a flux_calibration object, use the following:

Todo:
¢ add usage info
e create a sublime snippet for usage
« create cl-util for this class
¢ add a tutorial about £flux_calibration to documentation

e create a blog post about what f1ux_calibration does

usage code

Methods

calibrate() flux calibrate the science spectrum

calibrate()
flux calibrate the science spectrum

Return:

- “"flux_calibration™"

Usage:

Todo:
* add usage info
* create a sublime snippet for usage
* create cl-util for this method

* update the package tutorial if needed

108 Chapter 2

. How to cite soxspipe

http://fundamentals.readthedocs.io/en/latest/#tutorial
http://fundamentals.readthedocs.io/en/latest/#tutorial

soxspipe Documentation, Release v0.10.2

usage code

2.11.7 horne_extraction (class)

class horne_extraction (log, settings, recipeSettings, skyModelFrame, skySubtractedFrame,

twoDMapPath, recipeName=False, qcTable=False, productsTable=False,
dispersionMap=False, sofName=False)

Bases: object

perform optimal source extraction using the Horne method (Horne 1986)

Key Arguments:

Usage:

log —logger

settings — the settings dictionary

recipeSettings — the recipe specific settings

skyModelFrame — path to sky model frame

skySubtractedFrame — path to sky subtracted frame

twoDMapPath — path to 2D dispersion map image path

recipeName — name of the recipe as it appears in the settings dictionary
gcTable — the data frame to collect measured QC metrics

productsTable — the data frame to collect output products
dispersionMap — the FITS binary table containing dispersion map polynomial

sofName — the set-of-files filename

To setup your logger, settings and database connections, please use the fundamentals package (see tutorial

here).

To initiate a horne_extraction object, use the following:

Todo:

add usage info

create a sublime snippet for usage

create cl-util for this class

add a tutorial about horne_extraction to documentation

create a blog post about what horne_extraction does

from soxspipe.commonutils import horne_extraction
optimalExtractor = horne_extraction(
log=1log,
skyModelFrame=skyModelFrame,
skySubtractedFrame=skySubtractedFrame,
twoDMapPath=twoDMap,

(continues on next page)

2.11. Classes 109

http://fundamentals.readthedocs.io/en/latest/#tutorial
http://fundamentals.readthedocs.io/en/latest/#tutorial

soxspipe Documentation, Release v0.10.2

(continued from previous page)

settings=settings,
recipeName="soxs—-stare",
gcTable=qgc,
productsTable=products,
dispersionMap=dispMap,
sofName=sofName

gc, products = optimalExtractor.extract ()
Methods
extract() extract the full spectrum order-by-order and return
FITS Binary table containing order-merged spec-
trum
merge_extracted_orders(extractedOrdersDF) merge the extracted order spectra in one continuous
spectrum

residual_merge(group)

weighted_average(group)

extract ()
extract the full spectrum order-by-order and return FITS Binary table containing order-merged spectrum

Return:

— None

merge_extracted_orders (extractedOrdersDF)
merge the extracted order spectra in one continuous spectrum

Key Arguments:
* extractedOrdersDF — a data-frame containing the extracted orders

Return:

— None

2.11.8 keyword_lookup (class)
class keyword_lookup (log, instrument=False, settings=False)
Bases: object
The worker class for the keyword_lookup module
Key Arguments:
* log —logger
* settings — the settings dictionary. Default False

e instrument — can directly add the instrument if settings file is not avalable. Default False

110 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

Usage

To initalise the keyword lookup object in your code add the following:

from soxspipe.commonutils import keyword_lookup
kw = keyword_lookup (

log=1log,

settings=settings,

instrument=False,
) .get

After this it’s possible to either look up a single keyword using it’s alias:

kw ("DET_NDITSKIP")
> "ESO DET NDITSKIP"

or return a list of keywords:

kw (["PROV", "DET_NDITSKIP"])
> ['PROV', 'ESO DET NDITSKIP']

For those keywords that require an index it’s possible to also pass the index to the kw function:

kw ("PROV", 9)
> 'PROV09'

If a tag is not in the list of FITS Header keyword aliases in the configuration file a LookupError will be
raised.

Methods

get(tag[, index]) given a tag, and optional keyword index, return the
FITS Header keyword for the selected instrument

get (tag, index=False)
given a tag, and optional keyword index, return the FITS Header keyword for the selected instrument

Key Arguments:

* tag — the keyword tag as set in the yaml keyword dictionary (e.g. ‘SDP_KEYWORD_TMID’
returns “TMID’). Can be string or list of sttings.

* index —add an index to the keyword if not False (e.g. tag="PROV’, index=3 returns ‘PROV03’)
Default False

Return:

* keywords — the FITS Header keywords. Can be string or list of sttings depending on format of
tag argument

Usage

See docstring for the class

2.11. Classes 111

soxspipe Documentation, Release v0.10.2

2.11.9 chebyshev_order_wavelength_polynomials (class)

class chebyshev_order_wavelength_polynomials (log, orderDeg, wavelengthDeg, slitDeg, ex-

ponentsincluded=False, axis=False)
Bases: object

the chebyshev polynomial fits for the single frames; to be iteratively fitted to minimise errors
Key Arguments:

* log-logger

e orderDeg — degree of the order polynomial components

* wavelengthDeg — degree of wavelength polynomial components

* slitDeg —degree of the slit polynomial components

* exponentsIncluded — the exponents have already been calculated in the dataframe so no need
to regenerate. Default False

* axis —x,y or False. Default False.

Usage:

from soxspipe.commonutils.polynomials import chebyshev_order_wavelength_
—polynomials
poly = chebyshev_order_wavelength_polynomials (

log=self.log, orderDeg=orderDeg, wavelengthDeg=wavelengthDeg,
—slitDeg=slitDeg) .poly

Methods

poly(orderPixelTable, *coeff) the polynomial definition

poly (orderPixelTable, *coeff)
the polynomial definition

Key Arguments:
* orderPixelTable — a pandas dataframe containing wavelengths, orders and slit positions
* xcoeff —alist of the initial coefficients

Return:

* lhsVals — the left-hand-side vals of the fitted polynomials

2.11.10 chebyshev_order_xy polynomials (class)

class chebyshev_order_xy_ polynomials (log, orderDeg, axisBDeg, axisB="y', axisBCol=Fulse,

orderCol=False, exponentsincluded=False)
Bases: object

the chebyshev polynomial fits FIX ME
Key Arguments:
* log —logger

e orderDeg — degree of the order polynomial components

112 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

* axisBDeg — degree for polynomial to fit free axis-values

* axisB —the free axis related to axisBDeg. Default ‘y’. [*X’I'y’]

* axisBCol — name of the free axis column (if needed). Default False
¢ orderCol — name of the order column (if needed). Default False

* exponentsIncluded — the exponents have already been calculated in the dataframe so no need
to regenerate. Default False

Usage:

from soxspipe.commonutils.polynomials import chebyshev_order_wavelength_
—polynomials
poly = chebyshev_order_wavelength_polynomials (

log=self.log, orderDeg=orderDeg, wavelengthDeg=wavelengthDeg,
—slitDeg=slitDeg) .poly

Methods

poly(orderPixelTable, *coeff) the polynomial definition

poly (orderPixelTable, *coeff)
the polynomial definition

Key Arguments:
* orderPixelTable — a pandas dataframe containing X, y, order
e xcoeff —alist of the initial coefficients

Return:

* lhsVals — the left-hand-side vals of the fitted polynomials

2.11.11 chebyshev_xy_polynomial (class)
class chebyshev_xy_ polynomial (log, y_deg, yCol=False, exponentsincluded="False)
Bases: object
the chebyshev polynomial fits for the pinhole flat frame order tracing; to be iteratively fitted to minimise errors
Key Arguments:
* log —logger
* yCol —name of the yCol
e y_deg -y degree of the polynomial components

* exponentsIncluded — the exponents have already been calculated in the dataframe so no need
to regenerate. Default False

Usage:

from soxspipe.commonutils.polynomials import chebyshev_xy_polynomial
poly = chebyshev_xy_polynomial (
log=self.log, deg=deg) .poly

2.11. Classes 113

soxspipe Documentation, Release v0.10.2

Methods

poly(orderPixelTable, *coeff) the polynomial definition

poly (orderPixelTable, *coeff)
the polynomial definition

Key Arguments:
* orderPixelTable — data frame with all pixel data arrays
e xcoeff —alist of the initial coefficients

Return:

* xvals —the x values of the fitted polynomial

2.11.12 reducer (class)

class reducer (log, workspaceDirectory, settings=False, pathToSettings=False, quitOnFail=False, over-

write=False)
Bases: object

reduce all the data in a workspace, or target specific obs and files for reduction
Key Arguments:

* log-logger

* workspaceDirectory — path to the root of the workspace

* settings — the settings dictionary

* pathToSettings — path to the settings file.

* quitOnFail — quit the pipeline on any recipe failure

* overwrite — overwrite existing reductions. Default False.

Usage:

from soxspipe.commonutils import reducer

collection = reducer (
log=1log,
workspaceDirectory="/path/to/workspace/root/",
settings=settings,
pathToSettings="/path/to/settings.yaml"

)

collection.reduce ()

114 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

Methods
reduce() reduce the selected data
run_recipe(recipe, sof) execute a pipeline recipe
select_sof_files_to_process() select all of the SOF files still requiring processing
reduce ()

reduce the selected data

Return:

- ““reducer"

Usage:

Todo:
* add usage info
* create a sublime snippet for usage
* create cl-util for this method

* update the package tutorial if needed

usage code

run_recipe (recipe, sof)
execute a pipeline recipe

Key Arguments:
* recipe — the name of the recipe tp execute
* sof — path to the sof file containing the files the recipe requires

Usage:

reducer.run_recipe ("mbias", "/path/to/sofs/my_bias_files.sof")

select_sof files_to_process|()
select all of the SOF files still requiring processing

Key Arguments:

—

Return:

- “rawGroups~ —-—- a dataframe of the containing a list of recipes and sof file

—paths

Usage:

rawGroups = reducer.select_sof_files_to_process|()

2.11. Classes 115

soxspipe Documentation, Release v0.10.2

2.11.13 response_function (class)

class response_function (log, stdExtractionPath, settings=False)

Bases: object
The worker class for the response_function module
Key Arguments:

* log —logger

e settings — the settings dictionary

* stdExtractionPath — fits binary table containing the extracted standard spectrum

Usage:

To setup your logger, settings and database connections, please use the fundamentals package (see tutorial

here).

To initiate a response_function object, use the following:

Todo:
¢ add usage info
e create a sublime snippet for usage

e create cl-util for this class

¢ add a tutorial about response_ function to documentation

* create a blog post about what response_function does

usage code

Methods

get()

get the response_function object

get ()
get the response_function object

Return:

- ““response_function™

Usage:

Todo:
* add usage info
* create a sublime snippet for usage
* create cl-util for this method

* update the package tutorial if needed

116

Chapter 2. How to cite soxspipe

http://fundamentals.readthedocs.io/en/latest/#tutorial
http://fundamentals.readthedocs.io/en/latest/#tutorial

soxspipe Documentation, Release v0.10.2

usage code

2.11.14 subtract_background (class)

class subtract_background (log, frame, orderlable, sofName=False, recipeName=False, set-

tings=False, gcTable=False, productsTable=False, lamp="")
Bases: object

fit and subtract background flux from scattered light from frame
Key Arguments:
* log-logger
* settings — the settings dictionary
e frame — the frame to subtract background light from
* recipeName —name of the parent recipe
* sofName — the sof file name given to the parent recipe
e orderTable — the order geometry table
* gcTable — the data frame to collect measured QC metrics
e productsTable — the data frame to collect output products
¢ lamp — needed for UVB flats
Usage:

To setup your logger, settings and database connections, please use the fundamentals package (see tutorial
here).

To fit and subtract the background from an image:

from soxspipe.commonutils import subtract_background
background = subtract_background (
log=1log,
frame=myCCDDataObject,
orderTable="/path/to/orderTable",
settings=settings
)
backgroundFrame, backgroundSubtractedFrame = background.subtract ()

Methods
create_background_image(rowFitOrder, model the background image from intra-order flux
.2) detected
mask_order_locations(orderPixelTable) mask the order locations and return the masked
frame
subtract() fit and subtract background light from frame

create_background_image (rowFitOrder, gaussianSigma)
model the background image from intra-order flux detected

Key Arguments:

2.11. Classes 117

http://fundamentals.readthedocs.io/en/latest/#tutorial
http://fundamentals.readthedocs.io/en/latest/#tutorial

soxspipe Documentation, Release v0.10.2

* rowFitOrder — order of the polynomial fit to flux in each row
* gaussianSigma — the sigma of the gaussian used to blur the final image

mask_order locations (orderPixellable)
mask the order locations and return the masked frame

Key Arguments:
* orderPixelTable — the order location in a pandas datafrmae.

subtract ()
fit and subtract background light from frame

Return:

* backgroundSubtractedFrame —a CCDData object of the original input frame with fitted
background light subtracted

2.11.15 subtract_sky (class)

class subtract_sky (log, settings, recipeSettings, objectFrame, twoDMap, qcTable, productsTable,
dispMap=False, sofName=False, recipeName="soxs-stare")
Bases: object

Subtract the sky background from a science image using the Kelson Method

A model of the sky-background is created using a method similar to that described in Kelson, D. (2003), Optimal
Techniques in Two-dimensional Spectroscopy: Background Subtraction for the 21st Century (http://dx.doi.org/
10.1086/375502). This model-background is then subtracted from the original science image to leave only
non-sky flux.

Key Arguments:

* log—logger

* settings — the soxspipe settings dictionary

* recipeSettings — the recipe specific settings

* objectFrame — the image frame in need of sky subtraction

* twoDMap — 2D dispersion map image path

* gcTable — the data frame to collect measured QC metrics

e productsTable — the data frame to collect output products

* dispMap - path to dispersion map. Default False

* sofName — name of the originating SOF file. Default False

* recipeName — name of the recipe as it appears in the settings dictionary. Default soxs-stare
Usage:
To setup your logger and settings, please use the fundamentals package (see tutorial here).

To initiate a subtract_sky object, use the following:

Todo:

¢ add a tutorial about subt ract_sky to documentation

118 Chapter 2. How to cite soxspipe

http://dx.doi.org/10.1086/375502
http://dx.doi.org/10.1086/375502
http://fundamentals.readthedocs.io/en/latest/#tutorial

soxspipe Documentation, Release v0.10.2

from soxspipe.commonutils import subtract_sky
skymodel = subtract_sky(

log=1log,

settings=settings,

recipeSettings=recipeSettings,

objectFrame=objectFrame,

twoDMap=twoDMap,

gcTable=qc,

productsTable=products,

dispMap=dispMap
)
skymodelCCDData, skySubtractedCCDData, gcTable, productsTable = skymodel.
—subtract ()

Methods

add_data_to_placeholder_images(...) add sky-model and sky-subtracted data to place-
holder images

calculate_residuals(skyPixelsDF, fluxco- calculate residuals of the polynomial fits against the

eff, ...) observed line positions

clip_object_slit_positions(order_dataframedip out pixels flagged as an object

create_placeholder_images() create placeholder images for the sky model and sky-
subtracted frame

cross_dispersion_flux_normaliser(orderDkyasure and normalise the flux in the cross-
dispersion direction

fit_bspline_curve_to_sky(imageMapOrder, fit a single-order univariate bspline to the unclipped

) sky pixels (wavelength vs flux)
get_over_sampled_sky_from_order(imageMap@rderhe over sampled sky from an order
plot_image_comparison(objectFrame, ...) generate a plot of original image, sky-model and sky-

subtraction image
plot_sky_sampling(order,...[, tck,...]) generate a plot of sky sampling
rectify_order(order, imageMapOrder], ...]) rectify order on a fine slit-postion, wavelength grid

rolling_window_clipping(imageMapOrderDFEclip pixels in a rolling wavelength window

)

subtract() generate and subtract a sky-model from the input
Jframe

add_data_to_placeholder_ images (imageMapOrderDF, skymodelCCDData, skySubtractedC-

CDData)
add sky-model and sky-subtracted data to placeholder images

Key Arguments:
* imageMapOrderDF - single order dataframe from object image and 2D map
* skymodelCCDData — the sky model
* skySubtractedCCDData — the sky-subtracted data

Usage:

self.add_data_to_placeholder_images (imageMapOrderSkyOnly, skymodelCCDData,
—skySubtractedCCDData)

2.11.

Classes 119

soxspipe Documentation, Release v0.10.2

calculate_residuals (skyPixelsDF, fluxcoeff, orderDeg, wavelengthDeg, slitDeg, write-

QCs=Fualse)
calculate residuals of the polynomial fits against the observed line positions

Key Arguments:
* skyPixelsDF — the predicted line list as a data frame
e fluxcoeff — the flux-coefficients
* orderDeg — degree of the order fitting
* wavelengthDeg — degree of wavelength fitting
* slitDeg — degree of the slit fitting (False for single pinhole)

e writeQCs — write the QCs to dataframe? Default False

Return:

* residuals — combined x-y residuals

* mean — the mean of the combine residuals

* std — the stdev of the combine residuals

* median — the median of the combine residuals

clip_obiject_slit_positions (order_dataframes, aggressive=False)

clip out pixels flagged as an object
Key Arguments:

* order_dataframes —alist of order data-frames with pixels potentially containing the object
flagged.

Return:
* order_dataframes — the order dataframes with the object(s) slit-ranges clipped
* aggressive —mask entire slit range where an object is expected to lie. Default False

Usage:

allimageMapOrder = self.clip_object_slit_positions(
allimageMapOrder,
aggressive=True

create_placeholder_ images ()
create placeholder images for the sky model and sky-subtracted frame

Return:
* skymodelCCDData — placeholder for sky model image
* skySubtractedCCDData — placeholder for sky-subtracted image

Usage:

skymodelCCDData, skySubtractedCCDData = self.create_placeholder_images ()

cross_dispersion_flux_ normaliser (orderDF)
measure and normalise the flux in the cross-dispersion direction

Key Arguments:

120 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

* orderDF - a single order dataframe containing sky-subtraction flux residuals used to determine
and remove a slit-illumination correction

Return:

- “correctedOrderDF" -- dataframe with slit-illumination correction factor
—added (flux—-normaliser)

Usage:

correctedOrderDF = self.cross_dispersion_flux_normaliser (orderDF)

fit_bspline_curve_to_sky (imageMapOrder, bspline_order)
fit a single-order univariate bspline to the unclipped sky pixels (wavelength vs flux)

Key Arguments:

* imageMapOrder — single order dataframe, containing sky flux with object(s) and CRHs re-
moved

¢ order — the order number
* bspline_order — the order of the bspline to fit
Return:

* imageMapOrder — same imageMapOrder as input but now with sky_model (bspline fit
of the sky) and sky_subtracted_flux columns

* tck — the fitted bspline components. t for knots, c of coefficients, k for order

Usage:

imageMapOrder, tck = self.fit_bspline_curve_to_sky (
imageMapOrder,
bspline_order

get_over_sampled_sky from order (imageMapOrder, clipBPs=True, clipSlitEdge=False)
unpack the over sampled sky from an order

Key Arguments:
* imageMapOrder —single order dataframe from object image and 2D map
* clipBPs — clip bad-pixels? Deafult True

* clipSlitEdge —clip the slit edges. Percentage of slit width to clip. Default False

Return:

- “imageMapOrderWithObject™ —-- input order dataframe with outlying pixels,,
—masked

- “imageMapOrder® -- input order dataframe with outlying pixels masked AND

—object pixels masked

Usage:

imageMapOrderWithObject, imageMapOrderSkyOnly = skymodel.get_over_sampled_sky_
—from_order (imageMapOrder, o, ignoreBP=False, clipSlitEdge=0.00)

plot_image_ comparison (objectFrame, skyModelFrame, skySubFrame)
generate a plot of original image, sky-model and sky-subtraction image

2.11. Classes 121

soxspipe Documentation, Release v0.10.2

Key Arguments:
* objectFrame — object frame
* skyModelFrame — sky model frame
* skySubFrame — sky subtracted frame
Return:
e filePath — path to the plot pdf

plot_sky_sampling (order, imageMapOrderWithObjectDF, imageMapOrderDF, tck=False, knot-

Locations=False)
generate a plot of sky sampling

Key Arguments:
e order — the order number.

* imageMapOrderWithObjectDF — dataframe with various processed data without object
clipped

* imageMapOrderDF — dataframe with various processed data for order

* tck — spline parameters to replot

* knotLocations — wavelength locations of all knots used in the fit
Return:

e filePath — path to the generated QC plots PDF

Usage:

self.plot_sky_sampling(
order=myOrder,
imageMapOrderWithObjectDF=imageMapOrderWithObject,
imageMapOrderDF=imageMapOrder

rectify_order (order, imageMapOrder, remove_clipped=False, conserve_flux=False)
rectify order on a fine slit-postion, wavelength grid

Key Arguments:
e order — order to be rectified

* imageMapOrder — the image map for this order (wavelength, slit-position and flux for each
physical pixel

* conserve_flux — conserve the flux budget across the entire image

Return:

’f None

Usage:

’usage code

Todo:

* add usage info

122 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

* create a sublime snippet for usage
* write a command-line tool for this method

 update package tutorial with command-line tool info if needed

rolling_window_clipping (imageMapOrderDF, windowSize, sigma_clip_limit=35,
max_iterations=10, median_centre_func=False)
clip pixels in a rolling wavelength window

Key Arguments:
* imageMapOrderDF — dataframe with various processed data for a given order

* windowSize — the window-size used to perform rolling window clipping (number of data-
points)

* sigma_clip_limit - clip data values straying beyond this sigma limit. Default 5
* max_iterations — maximum number of iterations when clipping

* median_centre_func —use a median centre function for rolling window instead of quantile
(use to clip most deviate pixels only). Default False

Return:

* imageMapOrderDF —image order dataframe with ‘clipped’ == True for those pixels that have
been clipped via rolling window clipping

Usage:

imageMapOrder = self.rolling_window_clipping(
imageMapOrderDF=imageMapOrder,
windowSize=23,
sigma_clip_limit=4,
max_iterations=10,
median_centre_func=True

subtract ()
generate and subtract a sky-model from the input frame

Return:
* skymodelCCDData — CCDData object containing the model sky frame
* skySubtractedCCDData — CCDData object containing the sky-subtacted frame
* gcTable — the data frame containing measured QC metrics

* productsTable — the data frame containing collected output products

2.11.

Classes 123

soxspipe Documentation, Release v0.10.2

2.11.16 MaxFilter (class)

class MaxFilter (max_level)
Bases: object

Methods

filter(record)

2.11.17 soxs_disp_solution (class)

class soxs_disp_solution (log, settings=False, inputFrames=[], verbose=False, overwrite=False)
Bases: soxspipe.recipes._base_recipe_._base_recipe_

generate a first approximation of the dispersion solution from single pinhole frames

Key Arguments
* log - logger

* settings — the settings dictionary

e inputFrames —input fits frames. Can be a directory, a set-of-files (SOF) file or a list of fits frame paths.

e verbose — verbose. True or False. Default False

* overwrite — overwrite the prodcut file if it already exists. Default False

Usage
from soxspipe.recipes import soxs_disp_solution
disp_map_path = soxs_disp_solution (

log=1log,

settings=settings,
inputFrames=sofPath
) .produce_product ()

Todo:

¢ add a tutorial about soxs_disp_solution to documentation

Methods

clean_up()

update product status in DB and remove intermedi-
ate files once recipe is complete

clip_and_stack(frames, recipe[, ...])

mean combine input frames after sigma-clipping out-
lying pixels using a median value with median abso-
lute deviation (mad) as the deviation function

detrend(inputFrame[, master_bias, dark, ...])

subtract calibration frames from an input frame

get_recipe_settings()

get the recipe and arm specific settings

continues on next page

124

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

Table 26 — continued from previous page

prepare_frames([save]) prepare raw frames by converting pixel data from
ADU to electrons and adding mask and uncertainty
extensions
produce_product() generate a fisrt guess of the dispersion solution
gc_median_flux_level(frame[, frameType, -calculate the median flux level in the frame, exclud-
..D ing masked pixels
gc_ron([frameType, frameName, masterFrame, calculate the read-out-noise from bias/dark frames
)
report_output([rformat]) a method to report QC values alongside intermediate
and final products
subtract_mean_flux_level(rawFrame) iteratively median sigma-clip raw bias data frames
before calculating and removing the mean bias level
update_fits_keywords(frame) update fits keywords to comply with ESO Phase 3
standards
verify_input_frames() verify input frames match those required by the
*‘soxs_disp_solution * " recipe
xsh2soxs(frame) perform some massaging of the xshooter data so it

more closely resembles soxs data - this function can
be removed once code is production ready

clean_up ()
update product status in DB and remove intermediate files once recipe is complete

Usage

recipe.clean_up ()

clip_and_stack (frames, recipe, ignore_input_masks=False, post_stack_clipping=True)
mean combine input frames after sigma-clipping outlying pixels using a median value with median abso-
lute deviation (mad) as the deviation function

Key Arguments:
* frames — an ImageFileCollection of the frames to stack or a list of CCDData objects
* recipe — the name of recipe needed to read the correct settings from the yaml files
* ignore_input_masks —ignore the input masks during clip and stacking?

* post_stack_clipping — allow cross-plane clipping on combined frame. Clipping settings
in setting file. Default True.

Return:
* combined_frame —the combined master frame (with updated bad-pixel and uncertainty maps)
Usage:

This snippet can be used within the recipe code to combine individual (using bias frames as an example):

combined_bias_mean = self.clip_and_stack(
frames=self.inputFrames, recipe="soxs_mbias", ignore_input_masks=False,
—post_stack_clipping=True)

detrend (inputFrame, master_bias=False, dark=False, master_flat=False, order_table=False)
subtract calibration frames from an input frame

Key Arguments:

2.11. Classes 125

soxspipe Documentation, Release v0.10.2

* inputFrame — the input frame to have calibrations subtracted. CCDData object.

* master_bias — the master bias frame to be subtracted. CCDData object. Default False.

* dark — a dark frame to be subtracted. CCDData object. Default False.

* master_flat —divided input frame by this master flat frame. CCDData object. Default False.

* order_table — order table with order edges defined. Used to subtract scattered light back-
ground from frames. Default False.

Return:

* calibration_subtracted_frame — the input frame with the calibration frame(s) sub-
tracted. CCDData object.

Usage:

Within a soxspipe recipe use det rend like so:

myCalibratedFrame = self.detrend(
inputFrame=inputFrameCCDObject, master_bias=masterBiasCCDObject,
—dark=darkCCDObject)

Todo:

* code needs written to scale dark frame to exposure time of science/calibration frame

get_recipe_settings ()
get the recipe and arm specific settings

Return:
* recipeSettings — the recipe specific settings

Usage:

usage code

prepare_frames (save=False)
prepare raw frames by converting pixel data from ADU to electrons and adding mask and uncertainty
extensions

Key Arguments:

* save — save out the prepared frame to the intermediate products directory. Default False.
Return:

* preframes — the new image collection containing the prepared frames
Usage

Usually called within a recipe class once the input frames have been selected and verified (see
soxs_mbias code for example):

self.inputFrames = self.prepare_frames (
save=self.settings["save-intermediate-products"])

produce_product ()
generate a fisrt guess of the dispersion solution

126 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

Return:

* productPath — the path to the first guess dispersion map

gc_median_flux level (frame, frameType='MBIAS', frameName='master bias’, median-

Flux=Fualse)

calculate the median flux level in the frame, excluding masked pixels

Key Arguments:

frame — the frame (CCDData object) to determine the median level.
frameType — the type of the frame for reporting QC values Default “MBIAS”

frameName — the name of the frame in human readable words. Default “master bias”

* medianFlux — if serendipitously calculated elsewhere don’t recalculate. Default False

Return:

¢ medianFlux — median flux level in electrons

Usage:

medianFlux = self.qgc_median_flux_level (
frame=myFrame,
frameType="MBIAS",
frameName="master bias")

gc_ron (frameType=False, frameName=False, masterFrame=False, rawRon=False, master-

Ron=False)
calculate the read-out-noise from bias/dark frames

Key Arguments:

Return:

Usage:

frameType — the type of the frame for reporting QC values. Default False
frameName — the name of the frame in human readable words. Default False

masterFrame — the master frame (only makes sense to measure RON on master bias). Default
False

rawRon — if serendipitously calculated elsewhere don’t recalculate. Default False

masterRon — if serendipitously calculated elsewhere don’t recalculate. Default False

rawRon — raw read-out-noise in electrons

masterRon — combined read-out-noise in mbias

rawRon,
frameType="MBIAS",
frameName="master bias",
masterFrame=masterFrame

mbiasRon = self.gc_ron/(

report_output (rformat='stdout")
a method to report QC values alongside intermediate and final products

Key Arguments:

* rformat — the format to outout reports as. Default stdout. [stdoutl.. . .]

2.11. Classes

127

soxspipe Documentation, Release v0.10.2

Usage:

self.report_output (rformat="stdout")

subtract_mean_ flux level (rawFrame)
iteratively median sigma-clip raw bias data frames before calculating and removing the mean bias level

Key Arguments:

e rawFrame — the raw bias frame

Return:

- "meanFluxLevel”™ —-- the frame mean bias level

— “fluxStd® —-- the standard deviation of the flux distribution (RON)

- "noiseFrame™ —-- the raw bias frame with mean bias level removed

Usage:

meanFluxLevel, fluxStd, noiseFrame = self.subtract_mean_flux_level (rawFrame)

update_fits_keywords (frame)
update fits keywords to comply with ESO Phase 3 standards

Key Arguments:
* frame — the frame to update

Return:

’f None

Usage:

’usage code

Todo:
* add usage info
* create a sublime snippet for usage
* write a command-line tool for this method

 update package tutorial with command-line tool info if needed

verify input_frames ()
verify input frames match those required by the * “soxs_disp_solution " recipe

If the fits files conform to required input for the recipe everything will pass silently, otherwise an exception
shall be raised.

xsh2soxs (frame)
perform some massaging of the xshooter data so it more closely resembles soxs data - this function can be
removed once code is production ready

Key Arguments:

* frame — the CCDDate frame to manipulate

128 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

Return:
* frame — the manipulated soxspipe-ready frame

Usage:

frame = self.xsh2soxs (frame)

2.11.18 soxs_mbias (class)
class soxs_mbias (log, settings=False, inputFrames=[], verbose=False, overwrite=False)
Bases: soxspipe.recipes._base_recipe_._base_recipe_

The soxs_mbias recipe is used to generate a master-bias frame from a set of input raw bias frames. The
recipe is used only for the UV-VIS arm as NIR frames have bias (and dark current) removed by subtracting an
off-frame of equal expsoure length.

Key Arguments
* log —logger
* settings — the settings dictionary
* inputFrames —input fits frames. Can be a directory, a set-of-files (SOF) file or a list of fits frame paths.
* verbose — verbose. True or False. Default False

e overwrite — overwrite the prodcut file if it already exists. Default False

Usage
from soxspipe.recipes import soxs_mbias
mbiasFrame = soxs_mbias (

log=1log,

settings=settings,
inputFrames=filelList
) .produce_product ()

Todo:

¢ add a tutorial about soxs_mbias to documentation

Methods

clean_up() update product status in DB and remove intermedi-
ate files once recipe is complete

clip_and_stack(frames, recipe[, ...]) mean combine input frames after sigma-clipping out-
lying pixels using a median value with median abso-
lute deviation (mad) as the deviation function

det rend(inputFrame[, master_bias, dark, ...]) subtract calibration frames from an input frame

get_recipe_settings() get the recipe and arm specific settings

prepare_frames([save]) prepare raw frames by converting pixel data from
ADU to electrons and adding mask and uncertainty
extensions

continues on next page

2.11. Classes 129

soxspipe Documentation, Release v0.10.2

Table 27 — continued from previous page

produce_product()

generate a master bias frame

gc_bias_structure(combined_bias_mean)

calculate the structure of the bias

gc_median_flux_level(frame[, frameType,

)

calculate the median flux level in the frame, exclud-
ing masked pixels

gc_periodic_pattern_noise(frames)

calculate the periodic pattern noise based on the raw
input bias frames

gc_ron([frameType, frameName, masterFrame,

D

calculate the read-out-noise from bias/dark frames

report_output([rformat])

a method to report QC values alongside intermediate
and final products

subtract_mean_flux_level(rawFrame)

iteratively median sigma-clip raw bias data frames
before calculating and removing the mean bias level

update_fits_keywords(frame)

update fits keywords to comply with ESO Phase 3
standards

verify_input_frames()

verify the input frame match those required by the
soxs_mbias recipe

xsh2soxs(frame)

perform some massaging of the xshooter data so it
more closely resembles soxs data - this function can
be removed once code is production ready

clean_up ()

update product status in DB and remove intermediate files once recipe is complete

Usage

recipe.clean_up ()

clip_and_stack (frames, recipe, ignore_input_masks=False, post_stack_clipping=True)

mean combine input frames after sigma-clipping outlying pixels using a median value with median abso-
lute deviation (mad) as the deviation function

Key Arguments:

» frames — an ImageFileCollection of the frames to stack or a list of CCDData objects

* recipe — the name of recipe needed to read the correct settings from the yaml files

* ignore_input_masks —ignore the input masks during clip and stacking?

* post_stack_clipping — allow cross-plane clipping on combined frame. Clipping settings

in setting file. Default True.

Return:

* combined_frame —the combined master frame (with updated bad-pixel and uncertainty maps)

Usage:

This snippet can be used within the recipe code to combine individual (using bias frames as an example):

combined_bias_mean =
frames=self.inputFrames,
—post_stack_clipping=True)

recipe="soxs_mbias",

self.clip_and_stack (

ignore_input_masks=False, |,

detrend (inputFrame, master_bias=False, dark="False, master_flat=False, order_table=False)

subtract calibration frames from an input frame

Key Arguments:

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

* inputFrame — the input frame to have calibrations subtracted. CCDData object.

* master_bias — the master bias frame to be subtracted. CCDData object. Default False.

* dark — a dark frame to be subtracted. CCDData object. Default False.

* master_flat —divided input frame by this master flat frame. CCDData object. Default False.

* order_table — order table with order edges defined. Used to subtract scattered light back-
ground from frames. Default False.

Return:

* calibration_subtracted_frame — the input frame with the calibration frame(s) sub-
tracted. CCDData object.

Usage:

Within a soxspipe recipe use det rend like so:

myCalibratedFrame = self.detrend(
inputFrame=inputFrameCCDObject, master_bias=masterBiasCCDObject,
—dark=darkCCDObject)

Todo:

* code needs written to scale dark frame to exposure time of science/calibration frame

get_recipe_settings ()
get the recipe and arm specific settings

Return:
* recipeSettings — the recipe specific settings

Usage:

usage code

prepare_frames (save=False)
prepare raw frames by converting pixel data from ADU to electrons and adding mask and uncertainty
extensions

Key Arguments:

* save — save out the prepared frame to the intermediate products directory. Default False.
Return:

* preframes — the new image collection containing the prepared frames
Usage

Usually called within a recipe class once the input frames have been selected and verified (see
soxs_mbias code for example):

self.inputFrames = self.prepare_frames (
save=self.settings["save-intermediate-products"])

produce_product ()
generate a master bias frame

2.11. Classes 131

soxspipe Documentation, Release v0.10.2

Return:

* productPath — the path to the master bias frame

gc_bias_structure (combined_bias_mean)

calculate the structure of the bias
Key Arguments:

* combined_bias_mean — the mbias frame
Return:

* structx —slope of BIAS in X direction

* structx — slope of BIAS in Y direction

Usage:

structx, structy = self.gc_bias_structure (combined_bias_mean)

gc_median_flux level (frame, frameType='"MBIAS', frameName='master bias', median-

Flux=Fualse)
calculate the median flux level in the frame, excluding masked pixels

Key Arguments:

* frame — the frame (CCDData object) to determine the median level.

» frameType — the type of the frame for reporting QC values Default “MBIAS”

* frameName — the name of the frame in human readable words. Default “master bias”

* medianFlux — if serendipitously calculated elsewhere don’t recalculate. Default False
Return:

* medianFlux — median flux level in electrons

Usage:

medianFlux = self.gc_median_flux_level (
frame=myFrame,
frameType="MBIAS",
frameName="master bias")

gc_periodic_pattern_noise (frames)

calculate the periodic pattern noise based on the raw input bias frames

A 2D FFT is applied to each of the raw bias frames and the standard deviation and median absolute
deviation calcualted for each result. The maximum std/mad is then added as the ppnmax QC in the master
bias frame header.

Key Arguments:
* frames — the raw bias frames (imageFileCollection)

Return:

’— T Tppnmax””

Usage:

self.gc_periodic_pattern_noise (frames=self.inputFrames)

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

gc_ron (frameType=False, frameName=False, masterFrame=False, rawRon=False, master-

Ron=False)
calculate the read-out-noise from bias/dark frames

Key Arguments:
* frameType — the type of the frame for reporting QC values. Default False
* frameName — the name of the frame in human readable words. Default False

* masterFrame — the master frame (only makes sense to measure RON on master bias). Default
False

* rawRon — if serendipitously calculated elsewhere don’t recalculate. Default False

* masterRon — if serendipitously calculated elsewhere don’t recalculate. Default False

* rawRon — raw read-out-noise in electrons
* masterRon — combined read-out-noise in mbias

Usage:

rawRon, mbiasRon = self.qgc_ron(
frameType="MBIAS",
frameName="master bias",
masterFrame=masterFrame

report_output (rformat='stdout’)
a method to report QC values alongside intermediate and final products

Key Arguments:
* rformat — the format to outout reports as. Default stdout. [stdoutl. .. .]

Usage:

self.report_output (rformat="stdout")

subtract_mean_ flux level (rawFrame)
iteratively median sigma-clip raw bias data frames before calculating and removing the mean bias level

Key Arguments:

e rawFrame — the raw bias frame

Return:

- "meanFluxLevel”™ -- the frame mean bias level

— “fluxStd® —-- the standard deviation of the flux distribution (RON)

- “noiseFrame®™ —-- the raw bias frame with mean bias level removed

Usage:

meanFluxLevel, fluxStd, noiseFrame = self.subtract_mean_flux_level (rawFrame)

update_fits_keywords (frame)
update fits keywords to comply with ESO Phase 3 standards

Key Arguments:

e frame — the frame to update

2.11. Classes 133

soxspipe Documentation, Release v0.10.2

Return:

[one |

Usage:

’usage code ‘

Todo:
* add usage info
* create a sublime snippet for usage
* write a command-line tool for this method

* update package tutorial with command-line tool info if needed

verify input_frames ()
verify the input frame match those required by the soxs_mbias recipe

If the fits files conform to required input for the recipe everything will pass silently, otherwise an exception
shall be raised.

xsh2soxs (frame)
perform some massaging of the xshooter data so it more closely resembles soxs data - this function can be
removed once code is production ready

Key Arguments:

* frame — the CCDDate frame to manipulate
Return:

* frame — the manipulated soxspipe-ready frame

Usage:

frame = self.xsh2soxs (frame)

2.11.19 soxs_mdark (class)
class soxs_mdark (log, settings=False, inputFrames=[], verbose=False, overwrite=False)
Bases: soxspipe.recipes._base_recipe_._base_recipe_
The soxs_mdark recipe
Key Arguments
* log - logger
* settings — the settings dictionary
* inputFrames —input fits frames. Can be a directory, a set-of-files (SOF) file or a list of fits frame paths.
* verbose — verbose. True or False. Default False
* overwrite — overwrite the prodcut file if it already exists. Default False

Usage

134 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

from soxspipe.recipes import soxs_mdark
mdarkFrame = soxs_mdark (
log=1log,
settings=settings,
inputFrames=filelList
) . .produce_product ()

Todo:

¢ add a tutorial about soxs_mdark to documentation

Methods

clean_up()

update product status in DB and remove intermedi-
ate files once recipe is complete

clip_and_stack(frames, recipe[, ...])

mean combine input frames after sigma-clipping out-
lying pixels using a median value with median abso-
lute deviation (mad) as the deviation function

detrend(inputFrame[, master_bias, dark, ...])

subtract calibration frames from an input frame

get_recipe_settings()

get the recipe and arm specific settings

prepare_frames([save])

prepare raw frames by converting pixel data from
ADU to electrons and adding mask and uncertainty
extensions

produce_product()

generate a master dark frame

gc_median_flux_level(frame[, frameType,

)

calculate the median flux level in the frame, exclud-
ing masked pixels

gc_ron([frameType, frameName, masterFrame,

)

calculate the read-out-noise from bias/dark frames

report_output([rformat])

a method to report QC values alongside intermediate
and final products

subtract_mean_flux_level(rawFrame)

iteratively median sigma-clip raw bias data frames
before calculating and removing the mean bias level

update_fits_keywords(frame)

update fits keywords to comply with ESO Phase 3
standards

verify_input_frames()

verify input frame match those required by the
soxs_mdark recipe

xsh2soxs(frame)

perform some massaging of the xshooter data so it
more closely resembles soxs data - this function can
be removed once code is production ready

clean_up ()

update product status in DB and remove intermediate files once recipe is complete

Usage

recipe.clean_up ()

clip_and_stack (frames, recipe, ignore_input_masks=False, post_stack_clipping=True)

mean combine input frames after sigma-clipping outlying pixels using a median value with median abso-

lute deviation (mad) as the deviation function

2.11. Classes

soxspipe Documentation, Release v0.10.2

Key Arguments:
* frames — an ImageFileCollection of the frames to stack or a list of CCDData objects
* recipe — the name of recipe needed to read the correct settings from the yaml files
* ignore_input_masks —ignore the input masks during clip and stacking?

* post_stack_clipping — allow cross-plane clipping on combined frame. Clipping settings
in setting file. Default True.

Return:
* combined_frame —the combined master frame (with updated bad-pixel and uncertainty maps)
Usage:

This snippet can be used within the recipe code to combine individual (using bias frames as an example):

combined_bias_mean = self.clip_and_stack(
frames=self.inputFrames, recipe="soxs_mbias", ignore_input_masks=False,

—post_stack_clipping=True)

detrend (inputFrame, master_bias=False, dark=False, master_flat=False, order_table=False)
subtract calibration frames from an input frame

Key Arguments:
* inputFrame — the input frame to have calibrations subtracted. CCDData object.
* master_bias — the master bias frame to be subtracted. CCDData object. Default False.
* dark — a dark frame to be subtracted. CCDData object. Default False.
* master_flat —divided input frame by this master flat frame. CCDData object. Default False.

* order_table — order table with order edges defined. Used to subtract scattered light back-
ground from frames. Default False.

Return:

* calibration_subtracted_frame — the input frame with the calibration frame(s) sub-
tracted. CCDData object.

Usage:

Within a soxspipe recipe use det rend like so:

myCalibratedFrame = self.detrend(
inputFrame=inputFrameCCDObject, master_bias=masterBiasCCDObject,
—dark=darkCCDObject)

Todo:

* code needs written to scale dark frame to exposure time of science/calibration frame

get_recipe_settings ()
get the recipe and arm specific settings

Return:

* recipeSettings — the recipe specific settings

136 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

Usage:

usage code

prepare_frames (save=False)
prepare raw frames by converting pixel data from ADU to electrons and adding mask and uncertainty
extensions

Key Arguments:

* save — save out the prepared frame to the intermediate products directory. Default False.
Return:

* preframes — the new image collection containing the prepared frames
Usage

Usually called within a recipe class once the input frames have been selected and verified (see
soxs_mbias code for example):

self.inputFrames = self.prepare_frames (
save=self.settings["save-intermediate-products"])

produce_product ()
generate a master dark frame

Return:
* productPath — the path to master dark frame

gc_median_flux level (frame, frameType="MBIAS', frameName='master bias', median-

Flux=False)
calculate the median flux level in the frame, excluding masked pixels

Key Arguments:

* frame — the frame (CCDData object) to determine the median level.

* frameType — the type of the frame for reporting QC values Default “MBIAS”

* frameName — the name of the frame in human readable words. Default “master bias”

* medianFlux — if serendipitously calculated elsewhere don’t recalculate. Default False
Return:

* medianFlux — median flux level in electrons

Usage:

medianFlux = self.gc_median_flux_level (
frame=myFrame,
frameType="MBIAS",
frameName="master bias")

gc_ron (frameType=False, frameName=False, masterFrame=False, rawRon=False, master-

Ron=False)
calculate the read-out-noise from bias/dark frames

Key Arguments:
* frameType — the type of the frame for reporting QC values. Default False

e frameName — the name of the frame in human readable words. Default False

2.11. Classes 137

soxspipe Documentation, Release v0.10.2

* masterFrame — the master frame (only makes sense to measure RON on master bias). Default
False

* rawRon — if serendipitously calculated elsewhere don’t recalculate. Default False

* masterRon — if serendipitously calculated elsewhere don’t recalculate. Default False
Return:

* rawRon — raw read-out-noise in electrons

* masterRon — combined read-out-noise in mbias

Usage:

rawRon, mbiasRon = self.qgc_ron/(
frameType="MBIAS",
frameName="master bias",
masterFrame=masterFrame

report_output (rformat='stdout")
a method to report QC values alongside intermediate and final products

Key Arguments:
* rformat — the format to outout reports as. Default stdout. [stdoutl. .. .]

Usage:

self.report_output (rformat="stdout™)

subtract_mean_ flux_level (rawFrame)
iteratively median sigma-clip raw bias data frames before calculating and removing the mean bias level

Key Arguments:

e rawFrame — the raw bias frame

Return:

- "meanFluxLevel® -- the frame mean bias level

- “fluxStd® -- the standard deviation of the flux distribution (RON)

- "noiseFrame®™ —-- the raw bias frame with mean bias level removed

Usage:

meanFluxLevel, fluxStd, noiseFrame = self.subtract_mean_flux_level (rawFrame)

update_fits_keywords (frame)
update fits keywords to comply with ESO Phase 3 standards

Key Arguments:
* frame — the frame to update

Return:

— None

Usage:

138 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

usage code

Todo:
* add usage info
* create a sublime snippet for usage
* write a command-line tool for this method

* update package tutorial with command-line tool info if needed

verify input_frames ()
verify input frame match those required by the soxs_mdark recipe

If the fits files conform to required input for the recipe everything will pass silently, otherwise an exception
shall be raised.

xsh2soxs (frame)
perform some massaging of the xshooter data so it more closely resembles soxs data - this function can be
removed once code is production ready

Key Arguments:

e frame — the CCDDate frame to manipulate
Return:

* frame — the manipulated soxspipe-ready frame

Usage:

frame = self.xsh2soxs (frame)

2.11.20 soxs_mflat (class)
class soxs_mflat (log, settings=False, inputFrames=[], verbose=False, overwrite=False)
Bases: soxspipe.recipes._base_recipe_._base_recipe_
The soxs_mflat recipe
Key Arguments
* log - logger
* settings — the settings dictionary
* inputFrames —input fits frames. Can be a directory, a set-of-files (SOF) file or a list of fits frame paths.
* verbose — verbose. True or False. Default False
e overwrite — overwrite the prodcut file if it already exists. Default False

Usage

from soxspipe.recipes import soxs_mflat
recipe = soxs_mflat (

log=1log,

settings=settings,

(continues on next page)

2.11. Classes 139

soxspipe Documentation, Release v0.10.2

(continued from previous page)

inputFrames=filelist

)

mflatFrame = recipe.produce_product ()

Todo:

¢ add a tutorial about soxs_mflat to documentation

Methods

calibrate_frame_set() given all of the input data calibrate the frames by
subtracting bias and/or dark

clean_up() update product status in DB and remove intermedi-
ate files once recipe is complete

clip_and_stack(frames, recipe[, ...]) mean combine input frames after sigma-clipping out-
lying pixels using a median value with median abso-
lute deviation (mad) as the deviation function

detrend(inputFrame[, master_bias, dark, ...]) subtract calibration frames from an input frame

find_uvb_overlap_order_and_scale(...) *find uvb order where both lamps produce a similar
flux.

get_recipe_settings() get the recipe and arm specific settings

mask_low_sens_pixels(frame, or- add low-sensitivity pixels to bad-pixel mask

derTablePath)

normalise_flats(inputFlats, orderTablePath) determine the median exposure for each flat frame
and normalise the flux to that level

prepare_frames([save]) prepare raw frames by converting pixel data from
ADU to electrons and adding mask and uncertainty
extensions

produce_product() generate the master flat frames updated order loca-

tion table (with egde detection)
gc_median_flux_level(frame[, frameType, -calculate the median flux level in the frame, exclud-

D ing masked pixels
gc_ron([frameType, frameName, masterFrame, calculate the read-out-noise from bias/dark frames
)
report_output([rformat]) a method to report QC values alongside intermediate
and final products

stitch_uv_mflats(medianOrderFluxDF, ...) return a master UV-VIS flat frame after slicing
and stitch the UV-VIS D-Lamp and QTH-Lamp flat

frames
subtract_mean_flux_level(rawFrame) iteratively median sigma-clip raw bias data frames
before calculating and removing the mean bias level
update_fits_keywords(frame) update fits keywords to comply with ESO Phase 3
standards
verify_input_frames() verify the input frames match those required by the
soxs_mflat recipe
xsh2soxs(frame) perform some massaging of the xshooter data so it

more closely resembles soxs data - this function can
be removed once code is production ready

140 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

calibrate_frame_set ()

given all
Return:

clean_up ()

of the input data calibrate the frames by subtracting bias and/or dark

calibratedFlats — the calibrated frames

update product status in DB and remove intermediate files once recipe is complete

Usage

recipe.

clean_up ()

clip_and_stack (frames, recipe, ignore_input_masks=False, post_stack_clipping=True)
mean combine input frames after sigma-clipping outlying pixels using a median value with median abso-
lute deviation (mad) as the deviation function

Key Arguments:

Return:

Usage:

frames — an ImageFileCollection of the frames to stack or a list of CCDData objects
recipe — the name of recipe needed to read the correct settings from the yaml files
ignore_input_masks —ignore the input masks during clip and stacking?

post_stack_clipping — allow cross-plane clipping on combined frame. Clipping settings
in setting file. Default True.

combined_frame — the combined master frame (with updated bad-pixel and uncertainty maps)

This snippet can be used within the recipe code to combine individual (using bias frames as an example):

combined_bias_mean = self.clip_and_stack(
frames=self.inputFrames, recipe="soxs_mbias", ignore_input_masks=False,
—post_stack_clipping=True)

detrend (inputFrame, master_bias=False, dark=False, master_flat=False, order_table=False)

subtract

calibration frames from an input frame

Key Arguments:

Return:

inputFrame — the input frame to have calibrations subtracted. CCDData object.
master_bias — the master bias frame to be subtracted. CCDData object. Default False.
dark — a dark frame to be subtracted. CCDData object. Default False.

master_flat —divided input frame by this master flat frame. CCDData object. Default False.

order_table — order table with order edges defined. Used to subtract scattered light back-
ground from frames. Default False.

calibration_subtracted_frame — the input frame with the calibration frame(s) sub-
tracted. CCDData object.

2.11. Classes

141

soxspipe Documentation, Release v0.10.2

Usage:

Within a soxspipe recipe use det rend like so:

myCalibratedFrame = self.detrend(
inputFrame=inputFrameCCDObject, master_bias=masterBiasCCDObject,
—dark=darkCCDObject)

Todo:

* code needs written to scale dark frame to exposure time of science/calibration frame

find _uvb_overlap_order_and_scale (dcalibratedFlats, gcalibratedFlats)
find uvb order where both lamps produce a similar flux. This is the order at which the 2 lamp flats will be
scaled and stitched together

Key Arguments:
* gcalibratedFlats —the QTH lamp calibration flats.
* dcalibratedFlats — D2 lamp calibration flats
Return:
* order — the order number where the lamp fluxes are similar

Usage:

overlapOrder = self.find_uvb_overlap_order_and_
—scale(dcalibratedFlats=dcalibratedFlats, gcalibratedFlats=qcalibratedFlats)

get_recipe_settings ()
get the recipe and arm specific settings

Return:
* recipeSettings — the recipe specific settings

Usage:

usage code

mask_low_sens_pixels (frame, orderTablePath, returnMedianOrderFlux=False, writeQC=True)
add low-sensitivity pixels to bad-pixel mask

Key Arguments:
* frame — the frame to work on
* orderTablePath — path to the order table
* returnMedianOrderFlux —return a table of the median order fluxes. Default False.
* writeQC — add the QCs to the QC table?
Return:
» frame — with BPM updated with low-sensitivity pixels

e medianOrderFluxDF - data-frame of the median order fluxes af
returnMedianOrderFlux is True)

142 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

normalise_flats (inputFlats, orderTablePath, firstPassMasterFlat=False, lamp="")
determine the median exposure for each flat frame and normalise the flux to that level

Key Arguments:
e inputFlats — the input flat field frames
* orderTablePath — path to the order table

* firstPassMasterFlat — the first pass of the master flat. Default False

- “lamp® —-- a lamp tag for QL plots

Return:
* normalisedFrames — the normalised flat-field frames (CCDData array)
prepare_frames (save=False)

prepare raw frames by converting pixel data from ADU to electrons and adding mask and uncertainty
extensions

Key Arguments:

* save — save out the prepared frame to the intermediate products directory. Default False.
Return:

* preframes — the new image collection containing the prepared frames
Usage

Usually called within a recipe class once the input frames have been selected and verified (see
soxs_mbias code for example):

self.inputFrames = self.prepare_frames (
save=self.settings["save-intermediate-products"])

produce_product ()
generate the master flat frames updated order location table (with egde detection)

Return:
* productPath — the path to the master flat frame

gc_median_flux level (frame, frameType="MBIAS', frameName='master bias', median-

Flux=False)
calculate the median flux level in the frame, excluding masked pixels

Key Arguments:

* frame — the frame (CCDData object) to determine the median level.

* frameType — the type of the frame for reporting QC values Default “MBIAS”

* frameName — the name of the frame in human readable words. Default “master bias”

* medianFlux — if serendipitously calculated elsewhere don’t recalculate. Default False
Return:

* medianFlux — median flux level in electrons

Usage:

2.11. Classes 143

soxspipe Documentation, Release v0.10.2

medianFlux = self.gc_median_flux_level (
frame=myFrame,
frameType="MBIAS",
frameName="master bias")

gc_ron (frameType=False, frameName=False, masterFrame=False, rawRon=False, master-

Ron=False)
calculate the read-out-noise from bias/dark frames

Key Arguments:
* frameType — the type of the frame for reporting QC values. Default False
e frameName — the name of the frame in human readable words. Default False

* masterFrame — the master frame (only makes sense to measure RON on master bias). Default
False

* rawRon — if serendipitously calculated elsewhere don’t recalculate. Default False

* masterRon — if serendipitously calculated elsewhere don’t recalculate. Default False
Return:

* rawRon — raw read-out-noise in electrons

* masterRon — combined read-out-noise in mbias

Usage:

rawRon, mbiasRon = self.gc_ron/(
frameType="MBIAS",
frameName="master bias",
masterFrame=masterFrame

report_output (rformat='stdout")
a method to report QC values alongside intermediate and final products

Key Arguments:
* rformat — the format to outout reports as. Default stdout. [stdoutl. .. .]

Usage:

self.report_output (rformat="stdout")

stitch_uv_mflats (medianOrderFluxDF, orderTablePath)
return a master UV-VIS flat frame after slicing and stitch the UV-VIS D-Lamp and QTH-Lamp flat frames

Key Arguments:
* medianOrderFluxDF — data frame containing median order fluxes for D and QTH frames
* orderTablePath — the original order table paths from order-centre tracing

Return:
* stitchedFlat — the stitch D and QTH-Lamp master flat frame

Usage:

mflat = self.stitch_uv_mflats (medianOrderFluxDF)

144 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

subtract_mean_ flux level (rawFrame)
iteratively median sigma-clip raw bias data frames before calculating and removing the mean bias level

Key Arguments:

e rawFrame — the raw bias frame

Return:

- "meanFluxLevel”™ —-- the frame mean bias level

— “fluxStd® —-- the standard deviation of the flux distribution (RON)

- "noiseFrame™ —-- the raw bias frame with mean bias level removed

Usage:

meanFluxLevel, fluxStd, noiseFrame = self.subtract_mean_flux_level (rawFrame)

update_fits_keywords (frame)
update fits keywords to comply with ESO Phase 3 standards

Key Arguments:
* frame — the frame to update

Return:

’f None

Usage:

’usage code

Todo:
* add usage info
* create a sublime snippet for usage
* write a command-line tool for this method

 update package tutorial with command-line tool info if needed

verify input_frames ()
verify the input frames match those required by the soxs_mflat recipe

If the fits files conform to required input for the recipe everything will pass silently, otherwise an exception
will be raised.

xsh2soxs (frame)

perform some massaging of the xshooter data so it more closely resembles soxs data - this function can be
removed once code is production ready

Key Arguments:

» frame —the CCDDate frame to manipulate
Return:

* frame — the manipulated soxspipe-ready frame

Usage:

2.11. Classes 145

soxspipe Documentation, Release v0.10.2

frame = self.xsh2soxs (frame)

2.11.21 soxs_order_centres (class)

class soxs_order_centres (log, settings=False, inputFrames=[], verbose=False, overwrite=False)

Bases: soxspipe.recipes._base_recipe_._base_recipe_
The soxs_order_centres recipe
Key Arguments
* log-logger
* settings — the settings dictionary
e inputFrames —input fits frames. Can be a directory, a set-of-files (SOF) file or a list of fits frame paths.
* verbose — verbose. True or False. Default False

* overwrite — overwrite the prodcut file if it already exists. Default False

Usage

order_table = soxs_order_centres (
log=1log,

settings=settings,
inputFrames=a["inputFrames"]

) .produce_product ()

from soxspipe.recipes import soxs_order_centres

Todo:

¢ add a tutorial about soxs_order_centres to documentation

Methods

clean_up()

update product status in DB and remove intermedi-
ate files once recipe is complete

clip_and_stack(frames, recipel, ...])

mean combine input frames after sigma-clipping out-
lying pixels using a median value with median abso-
lute deviation (mad) as the deviation function

detrend(inputFrame[, master_bias, dark, ...])

subtract calibration frames from an input frame

get_recipe_settings()

get the recipe and arm specific settings

prepare_frames([save])

prepare raw frames by converting pixel data from
ADU to electrons and adding mask and uncertainty
extensions

produce_product()

generate the order-table with polynomal fits of order-
centres

gc_median_flux_level(frame[, frameType, calculate the median flux level in the frame, exclud-

) ing masked pixels

gc_ron([frameType, frameName, masterFrame, calculate the read-out-noise from bias/dark frames
)

continues on next page

146

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

Table 30 — continued from previous page

report_output([rformat]) a method to report QC values alongside intermediate
and final products

subtract_mean_flux_level(rawFrame) iteratively median sigma-clip raw bias data frames
before calculating and removing the mean bias level

update_fits_keywords(frame) update fits keywords to comply with ESO Phase 3
standards

verify_input_frames() verify input frames match those required by the

soxs_order_centres recipe

xsh2soxs(frame) perform some massaging of the xshooter data so it

more closely resembles soxs data - this function can
be removed once code is production ready

clean_up ()

update product status in DB and remove intermediate files once recipe is complete

Usage

recipe.

clean_up ()

clip_and_stack (frames, recipe, ignore_input_masks=False, post_stack_clipping=True)
mean combine input frames after sigma-clipping outlying pixels using a median value with median abso-
lute deviation (mad) as the deviation function

Key Arguments:

Return:

Usage:

frames — an ImageFileCollection of the frames to stack or a list of CCDData objects
recipe —the name of recipe needed to read the correct settings from the yaml files
ignore_input_masks —ignore the input masks during clip and stacking?

post_stack_clipping — allow cross-plane clipping on combined frame. Clipping settings
in setting file. Default True.

combined_frame —the combined master frame (with updated bad-pixel and uncertainty maps)

This snippet can be used within the recipe code to combine individual (using bias frames as an example):

combined_bias_mean = self.clip_and_stack(
frames=self.inputFrames, recipe="soxs_mbias", ignore_input_masks=False,
—post_stack_clipping=True)

detrend (inputFrame, master_bias=False, dark=False, master_flat=False, order_table=False)
subtract calibration frames from an input frame

Key Arguments:

inputFrame — the input frame to have calibrations subtracted. CCDData object.
master_bias — the master bias frame to be subtracted. CCDData object. Default False.
dark — a dark frame to be subtracted. CCDData object. Default False.

master_flat — divided input frame by this master flat frame. CCDData object. Default False.

order_table — order table with order edges defined. Used to subtract scattered light back-
ground from frames. Default False.

2.11. Classes

147

soxspipe Documentation, Release v0.10.2

Return:

* calibration_subtracted_frame — the input frame with the calibration frame(s) sub-
tracted. CCDData object.

Usage:

Within a soxspipe recipe use det rend like so:

myCalibratedFrame = self.detrend(

inputFrame=inputFrameCCDObject, master_bias=masterBiasCCDObject,
—dark=darkCCDObject)

Todo:

* code needs written to scale dark frame to exposure time of science/calibration frame

get_recipe_settings ()
get the recipe and arm specific settings

Return:
* recipeSettings — the recipe specific settings

Usage:

usage code

prepare_frames (save=False)

prepare raw frames by converting pixel data from ADU to electrons and adding mask and uncertainty
extensions

Key Arguments:

* save — save out the prepared frame to the intermediate products directory. Default False.
Return:

* preframes — the new image collection containing the prepared frames
Usage

Usually called within a recipe class once the input frames have been selected and verified (see
soxs_mbias code for example):

self.inputFrames = self.prepare_frames (
save=self.settings["save-intermediate-products"])

produce_product ()
generate the order-table with polynomal fits of order-centres

Return:
* productPath — the path to the order-table

gc_median_flux level (frame, frameType='MBIAS', frameName='master bias’, median-

Flux=Fualse)
calculate the median flux level in the frame, excluding masked pixels

Key Arguments:

* frame — the frame (CCDData object) to determine the median level.

148 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

* frameType — the type of the frame for reporting QC values Default “MBIAS”

* frameName — the name of the frame in human readable words. Default “master bias”

* medianFlux — if serendipitously calculated elsewhere don’t recalculate. Default False
Return:

* medianFlux — median flux level in electrons

Usage:

medianFlux = self.gc_median_flux_level (
frame=myFrame,
frameType="MBIAS",
frameName="master bias")

gc_ron (frameType=False, frameName=False, masterFrame=False, rawRon=False, master-

Ron=False)
calculate the read-out-noise from bias/dark frames

Key Arguments:
* frameType — the type of the frame for reporting QC values. Default False
* frameName — the name of the frame in human readable words. Default False

* masterFrame — the master frame (only makes sense to measure RON on master bias). Default
False

* rawRon — if serendipitously calculated elsewhere don’t recalculate. Default False

* masterRon — if serendipitously calculated elsewhere don’t recalculate. Default False

¢ rawRon —raw read-out-noise in electrons
* masterRon — combined read-out-noise in mbias

Usage:

rawRon, mbiasRon = self.qgc_ron/(
frameType="MBIAS",
frameName="master bias",
masterFrame=masterFrame

report_output (rformat='"stdout")
a method to report QC values alongside intermediate and final products

Key Arguments:
* rformat — the format to outout reports as. Default stdout. [stdoutl. .. .]

Usage:

self.report_output (rformat="stdout™)

subtract_mean_flux level (rawFrame)
iteratively median sigma-clip raw bias data frames before calculating and removing the mean bias level

Key Arguments:

e rawFrame — the raw bias frame

2.11. Classes 149

soxspipe Documentation, Release v0.10.2

Return:

- "meanFluxLevel”™ —-- the frame mean bias level

— “fluxStd® —-- the standard deviation of the flux distribution (RON)

- "noiseFrame™ —-- the raw bias frame with mean bias level removed

Usage:

meanFluxLevel, fluxStd, noiseFrame = self.subtract_mean_flux_level (rawFrame)

update_fits_keywords (frame)
update fits keywords to comply with ESO Phase 3 standards

Key Arguments:
* frame — the frame to update

Return:

’f None

Usage:

’usage code

Todo:
* add usage info
* create a sublime snippet for usage
* write a command-line tool for this method

* update package tutorial with command-line tool info if needed

verify input_frames ()
verify input frames match those required by the soxs_order_centres recipe

Return:

- ""None~™~

If the fits files conform to required input for the recipe everything will pass silently, otherwise an exception
shall be raised.

xsh2soxs (frame)

perform some massaging of the xshooter data so it more closely resembles soxs data - this function can be
removed once code is production ready

Key Arguments:

» frame —the CCDDate frame to manipulate
Return:

* frame — the manipulated soxspipe-ready frame

Usage:

150 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

frame = self.xsh2soxs (frame)

2.11.22 soxs_spatial_solution (class)

class soxs_spatial_solution (log, settings=False, inputFrames=[], verbose=False,
write=False, create2DMap="True, polyOrders=False)

over-

Bases: soxspipe.recipes._base_recipe_.

The soxs_spatial_solution recipe
Key Arguments
* log - logger

* settings — the settings dictionary

_base_recipe_

* inputFrames —input fits frames. Can be a directory, a set-of-files (SOF) file or a list of fits frame paths

e verbose — verbose. True or False. Default False

* overwrite — overwrite the prodcut file if it already exists. Default False

* create2DMap - create the 2D image map of wavelength, slit-position and order from disp solution.

* polyOrders —the orders of the x-y polynomials used to fit the dispersion solution. Overrides parameters
found in the yaml settings file. e.g 345435 is order_x=3, order_y=4 ,wavelength_x=5 ,wavelength_y=4,

slit_x=3 ,slit_y=5. Default False.

See produce_product method for usage.

Todo:

¢ add a tutorial about soxs_spatial_solution to documentation

Methods

clean_up()

update product status in DB and remove intermedi-
ate files once recipe is complete

clip_and_stack(frames, recipe[, ...])

mean combine input frames after sigma-clipping out-
lying pixels using a median value with median abso-
lute deviation (mad) as the deviation function

det rend(inputFrame[, master_bias, dark, ...])

subtract calibration frames from an input frame

get_recipe_settings()

get the recipe and arm specific settings

prepare_frames([save])

prepare raw frames by converting pixel data from
ADU to electrons and adding mask and uncertainty
extensions

produce_product()

generate the 2D dispersion map

gc_median_flux_level(frame[, frameType, -calculate the median flux level in the frame, exclud-
..D ing masked pixels

gc_ron([frameType, frameName, masterFrame, calculate the read-out-noise from bias/dark frames

D

report_output([rformat])

a method to report QC values alongside intermediate
and final products

continues on next page

2.11. Classes

151

soxspipe Documentation, Release v0.10.2

Table 31 — continued from previous page

subtract_mean_flux_level(rawFrame) iteratively median sigma-clip raw bias data frames
before calculating and removing the mean bias level

update_fits_keywords(frame) update fits keywords to comply with ESO Phase 3
standards

verify_input_frames() verify input frames match those required by the

(NRN

soxs_spatial_solution " recipe

xsh2soxs(frame) perform some massaging of the xshooter data so it

more closely resembles soxs data - this function can
be removed once code is production ready

clean_up ()

update product status in DB and remove intermediate files once recipe is complete

Usage

recipe.clean_up ()

clip_and_stack (frames, recipe, ignore_input_masks=False, post_stack_clipping=True)
mean combine input frames after sigma-clipping outlying pixels using a median value with median abso-
lute deviation (mad) as the deviation function

Key Arguments:

Return:

Usage:

frames — an ImageFileCollection of the frames to stack or a list of CCDData objects
recipe — the name of recipe needed to read the correct settings from the yaml files
ignore_input_masks —ignore the input masks during clip and stacking?

post_stack_clipping — allow cross-plane clipping on combined frame. Clipping settings
in setting file. Default True.

combined_frame —the combined master frame (with updated bad-pixel and uncertainty maps)

This snippet can be used within the recipe code to combine individual (using bias frames as an example):

combined_bias_mean = self.clip_and_stack(
frames=self.inputFrames, recipe="soxs_mbias", ignore_input_masks=False,
—post_stack_clipping=True)

detrend (inputFrame, master_bias=False, dark=False, master_flat=False, order_table=False)
subtract calibration frames from an input frame

Key Arguments:

* inputFrame — the input frame to have calibrations subtracted. CCDData object.

* master_bias —the master bias frame to be subtracted. CCDData object. Default False.

* dark — a dark frame to be subtracted. CCDData object. Default False.

* master_flat —divided input frame by this master flat frame. CCDData object. Default False.

* order_table — order table with order edges defined. Used to subtract scattered light back-

Return:

ground from frames. Default False.

152

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

* calibration_subtracted_frame — the input frame with the calibration frame(s) sub-
tracted. CCDData object.

Usage:

Within a soxspipe recipe use det rend like so:

myCalibratedFrame = self.detrend(

inputFrame=inputFrameCCDObject, master_bias=masterBiasCCDObject,
—dark=darkCCDObject)

Todo:

* code needs written to scale dark frame to exposure time of science/calibration frame

get_recipe_settings ()
get the recipe and arm specific settings

Return:

* recipeSettings — the recipe specific settings

Usage:

usage code

prepare_frames (save=False)

prepare raw frames by converting pixel data from ADU to electrons and adding mask and uncertainty
extensions

Key Arguments:

* save — save out the prepared frame to the intermediate products directory. Default False.

Return:

* preframes — the new image collection containing the prepared frames

Usage

Usually called within a recipe class once the input frames have been selected and verified (see
soxs_mbias code for example):

self.inputFrames = self.prepare_frames (
save=self.settings["save-intermediate-products"])

produce_product ()
generate the 2D dispersion map

Return:

* productPath — the path to the 2D dispersion map

Usage

from soxspipe.recipes import soxs_spatial_solution
recipe = soxs_spatial_solution(

log=1log,

settings=settings,

inputFrames=filelist

(continues on next page)

2.11. Classes 153

soxspipe Documentation, Release v0.10.2

(continued from previous page)

)

disp_map = recipe.produce_product ()

gc_median_flux level (frame, frameType='MBIAS', frameName='master bias', median-

Flux=False)
calculate the median flux level in the frame, excluding masked pixels

Key Arguments:
* frame — the frame (CCDData object) to determine the median level.
* frameType — the type of the frame for reporting QC values Default “MBIAS”
* frameName — the name of the frame in human readable words. Default “master bias”
* medianFlux — if serendipitously calculated elsewhere don’t recalculate. Default False
Return:
* medianFlux — median flux level in electrons

Usage:

medianFlux = self.gc_median_flux_level (
frame=myFrame,
frameType="MBIAS",
frameName="master bias")

gc_ron (frameType=False, frameName=False, masterFrame=False, rawRon=False, master-

Ron=False)
calculate the read-out-noise from bias/dark frames

Key Arguments:
* frameType — the type of the frame for reporting QC values. Default False

e frameName — the name of the frame in human readable words. Default False

* masterFrame — the master frame (only makes sense to measure RON on master bias). Default

False
* rawRon — if serendipitously calculated elsewhere don’t recalculate. Default False
* masterRon — if serendipitously calculated elsewhere don’t recalculate. Default False
Return:
* rawRon — raw read-out-noise in electrons
* masterRon — combined read-out-noise in mbias

Usage:

rawRon, mbiasRon = self.gc_ron(
frameType="MBIAS",
frameName="master bias",
masterFrame=masterFrame

report_output (rformat="stdout")
a method to report QC values alongside intermediate and final products

Key Arguments:

154 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

* rformat — the format to outout reports as. Default stdout. [stdoutl. .. .]

Usage:

self.report_output (rformat="stdout")

subtract_mean_flux_ level (rawFrame)
iteratively median sigma-clip raw bias data frames before calculating and removing the mean bias level

Key Arguments:

e rawFrame — the raw bias frame

Return:

- "meanFluxLevel® -- the frame mean bias level

— “fluxStd® —-- the standard deviation of the flux distribution (RON)

- "noiseFrame® —-- the raw bias frame with mean bias level removed

Usage:

meanFluxLevel, fluxStd, noiseFrame = self.subtract_mean_flux_level (rawFrame)

update_fits_keywords (frame)
update fits keywords to comply with ESO Phase 3 standards

Key Arguments:
* frame — the frame to update

Return:

’f None

Usage:

’usage code

Todo:
* add usage info
* create a sublime snippet for usage
* write a command-line tool for this method

* update package tutorial with command-line tool info if needed

verify input_frames /()
verify input frames match those required by the * ‘soxs_spatial_solution " recipe

If the fits files conform to required input for the recipe everything will pass silently, otherwise an exception
shall be raised.

xsh2soxs (frame)
perform some massaging of the xshooter data so it more closely resembles soxs data - this function can be
removed once code is production ready

Key Arguments:

* frame — the CCDDate frame to manipulate

2.11. Classes 155

soxspipe Documentation, Release v0.10.2

Return:
* frame — the manipulated soxspipe-ready frame

Usage:

frame = self.xsh2soxs (frame)

2.11.23 soxs_stare (class)
class soxs_stare (log, settings=False, inputFrames=[|, verbose=False, overwrite=False)
Bases: soxspipe.recipes._base_recipe_._base_recipe_
The soxs_stare recipe
Key Arguments
* log-logger
* settings — the settings dictionary
e inputFrames —input fits frames. Can be a directory, a set-of-files (SOF) file or a list of fits frame paths.
* verbose — verbose. True or False. Default False
* overwrite — overwrite the product file if it already exists. Default False

See produce_product method for usage.

Todo:
¢ add usage info
* create a sublime snippet for usage
* create cl-util for this class

¢ add a tutorial about soxs_stare to documentation

Methods
clean_up() update product status in DB and remove intermedi-
ate files once recipe is complete
clip_and_stack(frames, recipe[, ...]) mean combine input frames after sigma-clipping out-
lying pixels using a median value with median abso-
lute deviation (mad) as the deviation function
det rend(inputFrame[, master_bias, dark, ...]) subtract calibration frames from an input frame
get_recipe_settings() get the recipe and arm specific settings
prepare_frames([save]) prepare raw frames by converting pixel data from
ADU to electrons and adding mask and uncertainty
extensions
produce_product() The code to generate the product of the soxs_stare
recipe
gc_median_flux_level(frame[, frameType, -calculate the median flux level in the frame, exclud-
..D ing masked pixels

continues on next page

156 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

Table 32 — continued from previous page
gc_ron([frameType, frameName, masterFrame, calculate the read-out-noise from bias/dark frames

)
report_output([rformat]) a method to report QC values alongside intermediate
and final products
subtract_mean_flux_level(rawFrame) iteratively median sigma-clip raw bias data frames
before calculating and removing the mean bias level
update_fits_keywords(frame) update fits keywords to comply with ESO Phase 3
standards
verify_input_frames() verify the input frame match those required by the
soxs_stare recipe
xsh2soxs(frame) perform some massaging of the xshooter data so it
more closely resembles soxs data - this function can
be removed once code is production ready
clean_up ()

update product status in DB and remove intermediate files once recipe is complete

Usage

recipe.clean_up ()

clip_and_stack (frames, recipe, ignore_input_masks=False, post_stack_clipping=True)
mean combine input frames after sigma-clipping outlying pixels using a median value with median abso-
lute deviation (mad) as the deviation function

Key Arguments:
* frames — an ImageFileCollection of the frames to stack or a list of CCDData objects
* recipe — the name of recipe needed to read the correct settings from the yaml files
* ignore_input_masks —ignore the input masks during clip and stacking?

* post_stack_clipping — allow cross-plane clipping on combined frame. Clipping settings
in setting file. Default True.

Return:
* combined_frame —the combined master frame (with updated bad-pixel and uncertainty maps)
Usage:

This snippet can be used within the recipe code to combine individual (using bias frames as an example):

combined_bias_mean = self.clip_and_stack(
frames=self.inputFrames, recipe="soxs_mbias", ignore_input_masks=False,
—post_stack_clipping=True)

detrend (inputFrame, master_bias=False, dark=False, master_flat=False, order_table=False)
subtract calibration frames from an input frame

Key Arguments:
* inputFrame — the input frame to have calibrations subtracted. CCDData object.
* master_bias — the master bias frame to be subtracted. CCDData object. Default False.
* dark — a dark frame to be subtracted. CCDData object. Default False.

* master_flat —divided input frame by this master flat frame. CCDData object. Default False.

2.11. Classes 157

soxspipe Documentation, Release v0.10.2

* order_table — order table with order edges defined. Used to subtract scattered light back-
ground from frames. Default False.

Return:

* calibration_subtracted_frame — the input frame with the calibration frame(s) sub-
tracted. CCDData object.

Usage:

Within a soxspipe recipe use det rend like so:

myCalibratedFrame = self.detrend/(
inputFrame=inputFrameCCDObject, master_bias=masterBiasCCDObject,
—dark=darkCCDObject)

Todo:

* code needs written to scale dark frame to exposure time of science/calibration frame

get_recipe_settings ()
get the recipe and arm specific settings

Return:
* recipeSettings — the recipe specific settings

Usage:

usage code

prepare_frames (save=False)

prepare raw frames by converting pixel data from ADU to electrons and adding mask and uncertainty
extensions

Key Arguments:

* save — save out the prepared frame to the intermediate products directory. Default False.
Return:

* preframes — the new image collection containing the prepared frames
Usage

Usually called within a recipe class once the input frames have been selected and verified (see
soxs_mbias code for example):

self.inputFrames = self.prepare_frames (
save=self.settings["save-intermediate-products"])

produce_product ()
The code to generate the product of the soxs_stare recipe

Return:
* productPath — the path to the final product
Usage

158 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

from soxspipe.recipes import soxs_stare
recipe = soxs_stare(
log=log,
settings=settings,
inputFrames=filelList
)

stareFrame = recipe.produce_product ()

gc_median_flux_level (frame, frameType='MBIAS', frameName='master bias', median-

Flux=Fualse)
calculate the median flux level in the frame, excluding masked pixels

Key Arguments:

* frame — the frame (CCDData object) to determine the median level.

* frameType — the type of the frame for reporting QC values Default “MBIAS”

* frameName — the name of the frame in human readable words. Default “master bias”

* medianFlux — if serendipitously calculated elsewhere don’t recalculate. Default False
Return:

* medianFlux —median flux level in electrons

Usage:

medianFlux = self.gc_median_flux_level (
frame=myFrame,
frameType="MBIAS",
frameName="master bias")

gc_ron (frameType=False, frameName=False, masterFrame=False, rawRon=False, master-

Ron=False)
calculate the read-out-noise from bias/dark frames

Key Arguments:
* frameType — the type of the frame for reporting QC values. Default False
* frameName — the name of the frame in human readable words. Default False

* masterFrame — the master frame (only makes sense to measure RON on master bias). Default
False

* rawRon — if serendipitously calculated elsewhere don’t recalculate. Default False

* masterRon —if serendipitously calculated elsewhere don’t recalculate. Default False
Return:

* rawRon — raw read-out-noise in electrons

* masterRon — combined read-out-noise in mbias

Usage:

rawRon, mbiasRon = self.gc_ron(
frameType="MBIAS",
frameName="master bias",
masterFrame=masterFrame

2.11. Classes 159

soxspipe Documentation, Release v0.10.2

report_output (rformat="stdout")
a method to report QC values alongside intermediate and final products

Key Arguments:
* rformat — the format to outout reports as. Default stdout. [stdoutl. .. .]

Usage:

self.report_output (rformat="stdout")

subtract_mean_ flux level (rawFrame)
iteratively median sigma-clip raw bias data frames before calculating and removing the mean bias level

Key Arguments:

e rawFrame — the raw bias frame

Return:

- "meanFluxLevel® -- the frame mean bias level

— “fluxStd® —-- the standard deviation of the flux distribution (RON)

- "noiseFrame® -- the raw bias frame with mean bias level removed

Usage:

meanFluxLevel, fluxStd, noiseFrame = self.subtract_mean_flux_level (rawFrame)

update_fits_keywords (frame)
update fits keywords to comply with ESO Phase 3 standards

Key Arguments:
* frame — the frame to update

Return:

’f None

Usage:

’usage code

Todo:
* add usage info
* create a sublime snippet for usage
* write a command-line tool for this method

* update package tutorial with command-line tool info if needed

verify input_frames ()
verify the input frame match those required by the soxs_stare recipe

Return:

— ““None~

160 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

If the fits files conform to required input for the recipe everything will pass silently, otherwise an exception

shall be raised.

xsh2soxs (frame)

perform some massaging of the xshooter data so it more closely resembles soxs data - this function can be

removed once code is production ready

Key Arguments:

* frame — the CCDDate frame to manipulate

Return:

» frame — the manipulated soxspipe-ready frame

Usage:

frame = self.xsh2soxs (frame)

2.11.24 soxs_straighten (class)

The soxs_straighten recipe

Methods

class soxs_straighten (log, settings=False, inputFrames=[], verbose=False, overwrite=False)
Bases: soxspipe.recipes._base_recipe_.

_base_recipe_

clean_up()

update product status in DB and remove intermedi-
ate files once recipe is complete

clip_and_stack(frames, recipe[, ...])

mean combine input frames after sigma-clipping out-
lying pixels using a median value with median abso-
lute deviation (mad) as the deviation function

detrend(inputFrame[, master_bias, dark, ...])

subtract calibration frames from an input frame

get_recipe_settings()

get the recipe and arm specific settings

prepare_frames([save])

prepare raw frames by converting pixel data from
ADU to electrons and adding mask and uncertainty
extensions

produce_product()

The code to generate the

soxs_straighten recipe

the product

of

calculate the median flux level in the frame, exclud-
ing masked pixels

gc_median_flux_level(frame[, frameType,
)

gc_ron([frameType, frameName, masterFrame,

)

calculate the read-out-noise from bias/dark frames

report_output([rformat])

a method to report QC values alongside intermediate
and final products

subtract_mean_flux_level(rawFrame)

iteratively median sigma-clip raw bias data frames
before calculating and removing the mean bias level

update_fits_keywords(frame)

update fits keywords to comply with ESO Phase 3
standards

verify_input_frames()

verify the input frame match those required by the
soxs_straighten recipe

continues on next page

2.11. Classes

161

soxspipe Documentation, Release v0.10.2

Table 33 — continued from previous page
xsh2soxs(frame) perform some massaging of the xshooter data so it
more closely resembles soxs data - this function can
be removed once code is production ready

clean_up ()
update product status in DB and remove intermediate files once recipe is complete

Usage

recipe.clean_up ()

clip_and_stack (frames, recipe, ignore_input_masks=False, post_stack_clipping=True)
mean combine input frames after sigma-clipping outlying pixels using a median value with median abso-
lute deviation (mad) as the deviation function

Key Arguments:
» frames — an ImageFileCollection of the frames to stack or a list of CCDData objects
* recipe — the name of recipe needed to read the correct settings from the yaml files
* ignore_input_masks —ignore the input masks during clip and stacking?

* post_stack_clipping — allow cross-plane clipping on combined frame. Clipping settings
in setting file. Default True.

Return:
* combined_frame —the combined master frame (with updated bad-pixel and uncertainty maps)
Usage:

This snippet can be used within the recipe code to combine individual (using bias frames as an example):

combined_bias_mean = self.clip_and_stack(
frames=self.inputFrames, recipe="soxs_mbias", ignore_input_masks=False,
—post_stack_clipping=True)

detrend (inputFrame, master_bias=False, dark=False, master_flat=False, order_table=False)
subtract calibration frames from an input frame

Key Arguments:
* inputFrame — the input frame to have calibrations subtracted. CCDData object.
* master_bias — the master bias frame to be subtracted. CCDData object. Default False.
* dark — a dark frame to be subtracted. CCDData object. Default False.
* master_flat —divided input frame by this master flat frame. CCDData object. Default False.

* order_table — order table with order edges defined. Used to subtract scattered light back-
ground from frames. Default False.

Return:

* calibration_subtracted_frame — the input frame with the calibration frame(s) sub-
tracted. CCDData object.

Usage:

Within a soxspipe recipe use det rend like so:

162 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

myCalibratedFrame = self.detrend(

inputFrame=inputFrameCCDObject, master_bias=masterBiasCCDObject,
—dark=darkCCDObject)

Todo:

* code needs written to scale dark frame to exposure time of science/calibration frame

get_recipe_settings ()
get the recipe and arm specific settings

Return:

* recipeSettings — the recipe specific settings

Usage:

usage code

prepare_frames (save=False)

prepare raw frames by converting pixel data from ADU to electrons and adding mask and uncertainty
extensions

Key Arguments:

* save — save out the prepared frame to the intermediate products directory. Default False.

Return:

* preframes — the new image collection containing the prepared frames

Usage

Usually called within a recipe class once the input frames have been selected and verified (see
soxs_mbias code for example):

self.inputFrames self.prepare_frames (

save=self.settings["save-intermediate-products"])

produce_product ()
The code to generate the product of the soxs_straighten recipe

Return:

* productPath — the path to the final product

Usage

from soxspipe.recipes import soxs_straighten
recipe = soxs_straighten/(

log=1log,

settings=settings,

inputFrames=filelList

)

straightenFrame = recipe.produce_product ()

gc_median_flux_ level (frame, frameType="MBIAS', frameName='master bias', median-
Flux=False)
calculate the median flux level in the frame, excluding masked pixels

2.11. Classes 163

soxspipe Documentation, Release v0.10.2

Key Arguments:

* frame — the frame (CCDData object) to determine the median level.

* frameType — the type of the frame for reporting QC values Default “MBIAS”

* frameName — the name of the frame in human readable words. Default “master bias”

* medianFlux — if serendipitously calculated elsewhere don’t recalculate. Default False
Return:

* medianFlux — median flux level in electrons

Usage:

medianFlux = self.gc_median_flux_level (
frame=myFrame,
frameType="MBIAS",
frameName="master bias")

gc_ron (frameType=False, frameName=False, masterFrame=False, rawRon=False, master-

Ron=False)
calculate the read-out-noise from bias/dark frames

Key Arguments:
* frameType — the type of the frame for reporting QC values. Default False
* frameName — the name of the frame in human readable words. Default False

* masterFrame — the master frame (only makes sense to measure RON on master bias). Default
False

* rawRon — if serendipitously calculated elsewhere don’t recalculate. Default False

* masterRon — if serendipitously calculated elsewhere don’t recalculate. Default False

* rawRon — raw read-out-noise in electrons
* masterRon — combined read-out-noise in mbias

Usage:

rawRon, mbiasRon = self.qgc_ron(
frameType="MBIAS",
frameName="master bias",
masterFrame=masterFrame

report_output (rformat='stdout’)
a method to report QC values alongside intermediate and final products

Key Arguments:
* rformat — the format to outout reports as. Default stdout. [stdoutl.. . .]

Usage:

self.report_output (rformat="stdout")

subtract_mean_ flux level (rawFrame)
iteratively median sigma-clip raw bias data frames before calculating and removing the mean bias level

164 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

Key Arguments:

e rawFrame — the raw bias frame

Return:

- "meanFluxLevel® -- the frame mean bias level

- “fluxStd® -- the standard deviation of the flux distribution (RON)

- “noiseFrame™ —-- the raw bias frame with mean bias level removed

Usage:

meanFluxLevel, fluxStd, noiseFrame = self.subtract_mean_flux_level (rawFrame)

update_fits_keywords (frame)
update fits keywords to comply with ESO Phase 3 standards

Key Arguments:
* frame — the frame to update

Return:

’f None

Usage:

’ usage code

Todo:
* add usage info
* create a sublime snippet for usage
* write a command-line tool for this method

* update package tutorial with command-line tool info if needed

verify input_frames ()
verify the input frame match those required by the soxs_straighten recipe

Return:

- ““None-~

If the fits files conform to required input for the recipe everything will pass silently, otherwise an exception
shall be raised.

xsh2soxs (frame)
perform some massaging of the xshooter data so it more closely resembles soxs data - this function can be
removed once code is production ready

Key Arguments:
e frame — the CCDDate frame to manipulate
Return:

* frame — the manipulated soxspipe-ready frame

2.11. Classes 165

soxspipe Documentation, Release v0.10.2

Usage:

’frame = self.xsh2soxs (frame)

2.12 Functions

soxspipe.commonutils.
dispersion_map to_pixel_arrays

use a first-guess dispersion map to append x,y fits to
line-list data frame.

soxspipe.commonutils.filenamer

Given a FITS object, use the SOXS file-naming scheme
to return a filename to be used to save the FITS object
to disk

soxspipe.commonutils.qgetpackagepath

Get the root path for this python package

soxspipe.commonutils.toolkit.
add_recipe_logger

add a recipe-specific handler to the default logger that
writes the recipe’s logs adjacent to the recipe project

soxspipe.commonutils.toolkit.

give a dispersion solution and accompanying 2D dis-

create_dispersion_solution _grid_lines_ fpersionanap image, generate the grid lines to add to

QC plots

soxspipe.commonutils.toolkit.
cut_image_slice

cut and return an N-pixel wide and M-pixels long slice,
centred on a given coordinate from an image frame

soxspipe.commonutils.toolkit.
generic_quality checks

measure very basic quality checks on a frame and return
the QC table with results appended

soxspipe.commonutils.toolkit.
get_calibration_lamp

given a frame, determine which calibration lamp is be-
ing used

soxspipe.commonutils.toolkit.
get_calibrations_path

return the root path to the static calibrations

soxspipe.commonutils.toolkit.
predict_product_path

predict the path of the recipe product from a given SOF
name

soxspipe.commonutils.toolkit.
quicklook_ image

generate a quicklook image of a CCDObject - useful for
development/debugging

soxspipe.commonutils.toolkit.
read_spectral_format

read the spectral format table to get some key parame-
ters

soxspipe.commonutils.toolkit.
spectroscopic_image_quality_checks

measure and record spectroscopic image quailty checks

soxspipe.commonutils.toolkit.
twoD_disp _map image_to_dataframe

convert the 2D dispersion image map to a pandas
dataframe

soxspipe.commonutils.toolkit.
unpack_order_table

*unpack an order table and return a top-level
orderPolyTable data-frame and a second
orderPixelTable data-frame with the central-
trace coordinates of each order given

soxspipe.commonutils.uncompress

uncompress ESO fits.Z frames

166

Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

2.12.1 dispersion_map_to_pixel_arrays (function)

dispersion_map_to_pixel_arrays (log, dispersionMapPath, orderPixelTable, removeOffDetector-

Location=True)
use a first-guess dispersion map to append x,y fits to line-list data frame.

Return a line-list with x,y fits given a first guess dispersion map.*
Key Arguments:
* log —logger
* dispersionMapPath — path to the dispersion map
* orderPixelTable — a data-frame including ‘order’, ‘wavelength’ and ‘slit_pos’ columns

* removeOffDetectorLocation — if data points are found to lie off the detector plane then remove
them from the resutls. Default True

Usage:

from soxspipe.commonutils import dispersion_map_to_pixel_arrays
myDict = {

"order": [11, 11, 11],
"wavelength": [850.3, 894.3, 983.2],
"slit_position": [0, 0, O]

}

orderPixelTable = pd.DataFrame (myDict)

orderPixelTable = dispersion_map_to_pixel_arrays(
log=1log,
dispersionMapPath="/path/to/map.csv",
orderPixelTable=orderPixelTable

2.12.2 filenamer (function)

filenamer (log, frame, keywordLookup=False, detectorLookup="False, settings=False)
Given a FITS object, use the SOXS file-naming scheme to return a filename to be used to save the FITS object
to disk

Key Arguments:
* log-logger

e frame — the CCDData object frame

keywordLookup — the keyword lookup dictionary (needed if settings not provided). Default
False

detectorLookup — the detector parameters (needed if settings not provided). Default False

settings — the soxspipe settings dictionary (needed if keywordLookup and
detectorLookup not provided). Default False

Return:

filename — stanardised name to for the input frame

frame = CCDData.read(filepath, hdu=0, unit=u.electron, hdu_uncertainty='ERRS',
du_mask="QUAL', hdu_flags='FLAGS', key_uncertainty_type='UTYPE')

(continues on next page)

2.12. Functions 167

soxspipe Documentation, Release v0.10.2

(continued from previous page)

from soxspipe.commonutils import filenamer
filename = filenamer (

log=1log,

frame=frame,

settings=settings

2.12.3 getpackagepath (function)
getpackagepath ()
Get the root path for this python package

Used in unit testing code

2.12.4 add_recipe_logger (function)

add_recipe_logger (log, productPath)
add a recipe-specific handler to the default logger that writes the recipe’s logs adjacent to the recipe project

2.12.5 create_dispersion_solution_grid_lines_for_plot (function)

create_dispersion_solution_grid_ lines_for_ plot (log, dispMap, dispMaplmage, associat-
edFrame, kw, skylines=False, slitPosi-

tions=Fualse)
give a dispersion solution and accompanying 2D dispersion map image, generate the grid lines to add to QC

plots
Key Arguments:
* log—logger
* dispMap — path to dispersion map. Default False
* dispMapImage — the 2D dispersion map image
* associatedFrame — a frame associated with the reduction (to read arm and binning info).
e kw — fits header kw dictionary
e skylines —alist of skylines to use as the grid. Default False

* slitPositions —slit positions to plot (else plot min and max)

Usage:
from soxspipe.commonutils.toolkit import create_dispersion_solution_grid_lines_
—for_plot
gridLinePixelTable = create_dispersion_solution_grid_lines_for_plot (
log=1log,

dispMap=dispMap,
dispMapImage=dispMapImage,
associatedFrame=CCDObject,
kw=kw,

skylines=skylines

(continues on next page)

168 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

(continued from previous page)

for 1 in range (int (gridLinePixelTable['line'] .max())):

mask = (gridLinePixelTable['line'] == 1)

ax.plot (gridLinePixelTable.loc[mask] ["fit_v"], gridLinePixelTable.loc[mask] [
—"fit_x"], "w-", linewidth=0.5, alpha=0.8, color="black")

2.12.6 cut_image_slice (function)
cut_image_slice (log, frame, width, length, x, v, sliceAxis='x', median=False, plot=False)
cut and return an N-pixel wide and M-pixels long slice, centred on a given coordinate from an image frame
Key Arguments:
* log-logger
e frame — the data array to cut the slice from (masked array)
¢ width — width of the slice (odd number)
e length — length of the slice
* x —x-coordinate
e y —y-coordinate
* sliceAxis —the axis along which slice is to be taken. Default x
* median — collapse the slice to a median value across its width
e plot — generate a plot of slice. Useful for debugging.

Usage:

from soxspipe.commonutils.toolkit import cut_image_slice
slice = cut_image_slice(log=self.log, frame=self.pinholeFlat.data,
width=1, length=slicelength, x=x_fit, y=y_fit,
—plot=False)
if slice is None:
return None

2.12.7 generic_quality_checks (function)
generic_quality_checks (log, frame, settings, recipeName, gcTable)
measure very basic quality checks on a frame and return the QC table with results appended
Key Arguments:
* log—logger
e frame — CCDData object
* settings — soxspipe settings
* recipeName — the name of the recipe
* gcTable —the QC pandas data-frame to save the QC measurements

Usage:

Todo: add usage info create a sublime snippet for usage

2.12. Functions 169

soxspipe Documentation, Release v0.10.2

usage code

2.12.8 get_calibration_lamp (function)
get_calibration_lamp (log, frame, kw)
given a frame, determine which calibration lamp is being used
Key Arguments:
* log—logger
e frame — the frame to determine the calibration lamp for
e kw — the FITS header keyword dictionary
Usage:

from soxspipe.commonutils.toolkit import get_calibration_lamp

lamp = get_calibration_lamp(log=log, frame=frame, kw=kw)

2.12.9 get_calibrations_path (function)
get_calibrations_path (log, settings)
return the root path to the static calibrations
Key Arguments:
* log—logger
* settings — the settings dictionary

Usage:

from soxspipe.commonutils.toolkit import get_calibrations_path
calibrationRootPath = get_calibrations_path(log=log, settings=settings)

2.12.10 predict_product_path (function)

predict_product_path (sofName, recipeName=False)
predict the path of the recipe product from a given SOF name

Key Arguments:
* log - logger,
* sofName — name or full path to the sof file

* recipeName — name of the recipe being considered. Default False.

Usage:

from soxspipe.commonutils import toolkit
productPath = toolkit.predict_product_path(sofFilePath)

170 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

2.12.11 quicklook_image (function)

quicklook_image (log, CCDObject, show=True, ext='data', stdWindow=3, title=False, surface-
Plot=False, dispMap=False, dispMaplmage=False, inst=False, settings=False, sky-

lines=False, saveToPath=False)
generate a quicklook image of a CCDObject - useful for development/debugging

Key Arguments:
* log—logger
* CCDObject — the CCDObject to plot
* show — show the image. Set to False to skip
¢ ext —the name of the the extension to show. Can be “data”, “mask” or “err”. Default “data”.
e title — give a title for the plot
* surfacePlot —plot as a 3D surface plot
* dispMap — path to dispersion map. Default False
* dispMapImage — the 2D dispersion map image
* inst — provide instrument name if no header exists

* skylines — mark skylines on image

from soxspipe.commonutils.toolkit import quicklook_image
quicklook_image (
log=self.log, CCDObject=myframe, show=True)

2.12.12 read_spectral_format (function)
read_spectral_format (log, settings, arm, dispersionMap=False, extended=True)
read the spectral format table to get some key parameters
Key Arguments:
* log—logger
* settings — soxspipe settings
* arm— arm to retrieve format for

* dispersionMap —if a dispersion map is given, the minimum and maximum dispersion axis pixel limits
are computed

* extended - the spectral format table can providle WLMIN/WLMAX (extended=False) or WLMIN-
FUL/WLMAXFUL (extended=True)
Return:
* orderNums — a list of the order numbers
* waveLengthMin — a list of the maximum wavelengths reached by each order

* waveLengthMax — a list of the minimum wavelengths reached by each order

Usage:

2.12. Functions 171

soxspipe Documentation, Release v0.10.2

from soxspipe.commonutils.toolkit import read_spectral_format

READ THE SPECTRAL FORMAT TABLE TO DETERMINE THE LIMITS OF THE TRACES

orderNums, wavelLengthMin, waveLengthMax = read_spectral_format (
log=self.log, settings=self.settings, arm=arm)

2.12.13 spectroscopic_image_quality_checks (function)

spectroscopic_image_quality_ checks (log, frame, orderTablePath, settings, recipeName,

gcTable)
measure and record spectroscopic image quailty checks

Key Arguments:
* log—logger
e frame — CCDData object
* orderTablePath — path to the order table
* settings — soxspipe settings
* recipeName — the name of the recipe
* gcTable - the QC pandas data-frame to save the QC measurements

Usage:

Todo: add usage info create a sublime snippet for usage

usage code

2.12.14 twoD_disp_map_image to_dataframe (function)

twoD_disp_map_image_to_dataframe (log, slit_length, twoDMapPath, kw=False, associated-

Frame=False, removeMaskedPixels=False)
convert the 2D dispersion image map to a pandas dataframe

Key Arguments:
* log —logger
* twoDMapPath — 2D dispersion map image path
* kw — fits keyword lookup dictionary

e associatedFrame — include a flux column in returned dataframe from a frame assosiated with the
dispersion map. Default False

* removeMaskedPixels —remove the masked pixels from the assosicated image? Default False

Usage:

from soxspipe.commonutils.toolkit import twoD_disp_map_image_to_dataframe
mapDF = twoD_disp_map_image_to_dataframe (log=log, twoDMapPath=twoDMap,
—associatedFrame=objectFrame, kw=kw)

172 Chapter 2. How to cite soxspipe

soxspipe Documentation, Release v0.10.2

2.12.15 unpack_order_table (function)

unpack_order_table (log, orderlablePath, extend=0.0, pixelDelta=1, binx=1, biny=1, prebinned=False,

order=Fualse, limitToDetectorFormat=Fualse)
*unpack an order table and return a top-level orderPolyTable data-frame and a second

orderPixelTable data-frame with the central-trace coordinates of each order given
Key Arguments:
* orderTablePath — path to the order table
* extend — fractional increase to the order area in the y-axis (needed for masking)
* pixelDelta — space between returned data points. Default / (sampled at every pixel)
* binx —binning in the x-axis (from FITS header). Default /
* biny — binning in the y-axis (from FITS header). Default /

* prebinned — was the order-table measured on a pre-binned frame (typically only for mflats). Default
False

* order — unpack only a single order

e limitToDetectorFormat — limit the pixels return to those limited by the detector format static cali-
bration table

Usage:

UNPACK THE ORDER TABLE

from soxspipe.commonutils.toolkit import unpack_order_table

orderPolyTable, orderPixelTable = unpack_order_table(
log=self.log, orderTablePath=orderTablePath, extend=0.)

2.12.16 uncompress (function)
uncompress (log, directory)
uncompress ESO fits.Z frames
Key Arguments:
* log —logger

* directory —directory containing .Z file to uncompress

from soxspipe.commonutils import uncompress
uncompress (

log=1log,

directory="/path/to/raw_data/"

2.12. Functions 173

soxspipe Documentation, Release v0.10.2

2.13 A-Z Index

174 Chapter 2. How to cite soxspipe

CHAPTER
THREE

ACKNOWLEDGEMENTS

* SOXSPIPE makes use of ccdproc, an Astropy package for image reduction (Craig et al. 2021).

175

https://ccdproc.readthedocs.io/en/latest/index.html
https://zenodo.org/record/4606771

soxspipe Documentation, Release v0.10.2

176 Chapter 3. Acknowledgements

PYTHON MODULE INDEX

C

soxspipe.commonutils, 87
soxspipe.commonutils.polynomials, 88
soxspipe.commonutils.toolkit, 89

r

soxspipe.recipes, 88

u
soxspipe.utKit, 90

177

soxspipe Documentation, Release v0.10.2

178 Python Module Index

A

add_data_to_placeholder_images () (sub-
tract_sky method), 119
add_recipe_logger () (in module

soxspipe.commonutils.toolkit), 168

C

calculate_residuals ()
method), 56, 92
calculate_residuals()
method), 101
calculate_residuals ()
method), 105
calculate_residuals ()
119
calibrate () (flux_calibration method), 108
calibrate_frame_set () (soxs_mflat method), 28,
141
categorise_frames ()
96
chebyshev_order_wavelength_polynomials
(class in soxspipe.commonutils.polynomials),
112
chebyshev_order_xy_polynomials (class in
soxspipe.commonutils.polynomials), 112
chebyshev_xy_polynomial (class in
soxspipe.commonutils.polynomials), 113
clean_up () (soxs_disp_solution method), 125
clean_up () (soxs_mbias method), 130

(create_dispersion_map
(detect_continuum
(detect_order_edges

(subtract_sky method),

(data_organiser method),

clean_up () (soxs_mdark method), 135
clean_up () (soxs_mflat method), 141
(soxs_order_centres method), 147

clean_up () (soxs_spatial_solution method), 152

clean_up () (soxs_stare method), 157

clean_up () (soxs_straighten method), 162

clip_and_stack () (_base_recipe_ method), 49

clip_and_stack () (soxs_disp_solution method),
125

clip_and_stack () (soxs_mbias method), 130

clip_and_stack () (soxs_mdark method), 135

clip_and_stack () (soxs_mflat method), 141

_— — — — — —

(
(
(
clean_up (
(
(
(

INDEX

clip_and_stack () (soxs_order_centres method),
147

clip_and_stack () (soxs_spatial_solution method),
152

clip_and_stack () (soxs_stare method), 157

clip_and_stack () (soxs_straighten method), 162

clip_object_slit_positions () (subtract_sky
method), 120

convert_and_fit ()
method), 57, 93

create_background_image ()
tract_background method), 117

create_directory_table () (data_organiser
method), 97

create_dispersion_map
soxspipe.commonutils), 54, 91

(create_dispersion_map

(sub-

(class in

create_dispersion_solution_grid_lines_for_plot ()

(in module soxspipe.commonutils.toolkit), 168
create_new_static_line_list () (cre-
ate_dispersion_map method), 58, 93
create_pixel_ arrays() (detect_continuum

method), 102
create_placeholder_images ()
ate_dispersion_map method), 57, 93
create_placeholder_images () (subtract_sky
method), 120

(cre-

cross_dispersion_flux_normaliser () (sub-
tract_sky method), 120
cut_image_slice () (in module

soxspipe.commonutils.toolkit), 169

D

data_organiser (class in soxspipe.commonutils), 95

detect_continuum (class in soxspipe.commonutils),
100

detect_order_edges
soxspipe.commonutils), 103

detect_pinhole_arc_1line()
ate_dispersion_map method), 55, 94

detector_lookup (class in soxspipe.commonutils),
66, 107

(class in

(cre-

determine_lower_upper_edge_pixel_positions()

179

soxspipe Documentation, Release v0.10.2

(detect_order_edges method), 105
determine_order_flux_threshold()

tect_order_edges method), 105
detrend () (soxs_disp_solution method), 125

(de-

detrend () (soxs_mbias method), 130
detrend () (soxs_mdark method), 136
detrend () (soxs_mflat method), 141

detrend () (soxs_order_centres method), 147
detrend () (soxs_spatial_solution method), 152
detrend () (soxs_stare method), 157

detrend () (soxs_straighten method), 162
dispersion_map_to_pixel_arrays () (in mod-
ule soxspipe.commonutils), 167

E

extract () (horne_extraction method), 110

F

filenamer () (in module soxspipe.commonutils), 167
find_uvb_overlap_order_and_scale ()
(soxs_mflat method), 29, 142
fit_1d_gaussian_to_slice()
tect_continuum method), 102
fit_bspline_curve_to_sky ()
method), 121
fit_global_polynomial ()
method), 102
fit_global_polynomial ()
method), 105
fit_order_polynomial ()
method), 102
fit_order_polynomial ()
method), 106
fit_polynomials ()
method), 56, 94
flux_calibration (class in soxspipe.commonutils),
108

(de-

(subtract_sky
(detect_continuum
(detect_order_edges
(detect_continuum
(detect_order_edges

(create_dispersion_map

G

generate_sof_and_product_names ()
(data_organiser method), 97

generic_quality_checks () (in module
soxspipe.commonutils.toolkit), 169

get () (create_dispersion_map method), 55, 94

get () (detect_continuum method), 102

get () (detect_order_edges method), 106

get () (detector_lookup method), 66, 107

get () (keyword_lookup method), 67, 111

get () (response_function method), 116

get_calibration_lamp () (in module
soxspipe.commonutils.toolkit), 170

get_calibrations_path () (in module

soxspipe.commonutils.toolkit), 170

get_over_sampled_sky_from_order () (sub-
tract_sky method), 121
get_predicted_line_list () (cre-

ate_dispersion_map method), 55, 94
get_recipe_settings () (soxs_disp_solution
method), 126
get_recipe_settings ()
131
get_recipe_settings ()
136
get_recipe_settings () (soxs_mflat method), 142
get_recipe_settings () (soxs_order_centres
method), 148
get_recipe_settings ()
method), 153
get_recipe_settings () (soxs_stare method), 158
get_recipe_settings () (soxs_straighten
method), 163
getpackagepath () (in
soxspipe.commonutils), 168

(soxs_mbias method),

(soxs_mdark method),

(soxs_spatial_solution

module

Fl

horne_extraction (class in soxspipe.commonutils),
109

K

keyword_lookup (class in soxspipe.commonutils), 66,
110

M

map_to_image ()
57,94
mask_low_sens_pixels ()
28, 142
mask_order_locations ()
method), 118
MaxFilter (class in soxspipe.commonutils.toolkit), 124
merge_extracted_orders () (horne_extraction
method), 110
module
soxspipe.commonutils, 87
soxspipe.commonutils.polynomials, 88
soxspipe.commonutils.toolkit, 89
soxspipe.recipes, 88
soxspipe.utKit, 90

N

normalise_flats () (soxs_mflat method), 28, 142

O

order_to_image ()
method), 57, 95

(create_dispersion_map method),
(soxs_mflat method),

(subtract_background

(create_dispersion_map

180

Index

soxspipe Documentation, Release v0.10.2

P

plot_image_comparison ()
method), 121
plot_results () (detect_continuum method), 103
plot_results () (detect_order_edges method), 106
plot_sky_sampling () (subtract_sky method), 122

(subtract_sky

poly () (chebyshev_order_wavelength_polynomials
method), 112
poly () (chebyshev_order_xy_polynomials method),

113
poly () (chebyshev_xy_polynomial method), 114
populate_products_table () (data_organiser
method), 97
predict_product_path () (in
soxspipe.commonutils.toolkit), 170
prepare () (data_organiser method), 98
prepare_frames () (_base_recipe_ method), 70
prepare_frames () (soxs_disp_solution method),
126
prepare_frames
prepare_frames
prepare_frames
prepare_frames
148
prepare_frames () (soxs_spatial_solution method),
153
prepare_frames () (soxs_stare method), 158
prepare_frames () (soxs_straighten method), 163
produce_product () (soxs_disp_solution method),
36, 126
produce_product
produce_product
produce_product
produce_product
41, 148
produce_product ()
method), 46, 153
produce_product () (soxs_stare method), 158
produce_product () (soxs_straighten method), 163

Q

module

(soxs_mbias method), 131

(soxs_mdark method), 137

(soxs_mflat method), 143
(soxs_order_centres method),

—~ o~ o~ —~

)
)
)
)

(soxs_mbias method), 12, 131
(soxs_mdark method), 16, 137
(soxs_mflat method), 28, 143

(soxs_order_centres method),

— e~ o~ —~

)
)
)
)

(soxs_spatial_solution

gc_bias_structure () (soxs_mbias method), 12,
132

gc_median_flux_level () (soxs_disp_solution
method), 127

gc_median_flux_level () (soxs_mbias method),
132

gc_median_flux_level () (soxs_mdark method),
137

gc_median_flux_level () (soxs_mflat method),
143

gc_median_flux_level ()
method), 148

(soxs_order_centres

gc_median_flux_level () (soxs_spatial_solution

method), 154

gc_median_flux_level () (soxs_stare method),
159

gc_median_flux_level () (soxs_straighten
method), 163

gc_periodic_pattern_noise() (soxs_mbias

method), 13, 132

gc_ron () (soxs_disp_solution method), 127
qgc_ron () (soxs_mbias method), 132

gc_ron () (soxs_mdark method), 137
qgc_ron () (soxs_mflat method), 144

qgc_ron () (soxs_order_centres method), 149
qgc_ron () (soxs_spatial_solution method), 154
gc_ron () (soxs_stare method), 159

gc_ron () (soxs_straighten method), 164

quicklook_image () (in module
soxspipe.commonutils.toolkit), 171
read_spectral_format () (in module

soxspipe.commonutils.toolkit), 171
rectify_order () (subtract_sky method), 122
reduce () (reducer method), 115
reducer (class in soxspipe.commonutils), 114
report_output () (soxs_disp_solution method), 127
report_output () (soxs_mbias method), 133
report_output () (soxs_mdark method), 138
report_output () (soxs_mflat method), 144
report_output () (soxs_order_centres method), 149
report_output () (soxs_spatial_solution method),

154
report_output () (soxs_stare method), 159
report_output () (soxs_straighten method), 164
response_function (class in

soxspipe.commonutils), 116
rolling_window_clipping()

method), 123
run_recipe () (reducer method), 115

S

select_sof_files_to_process()
method), 115
session_create () (data_organiser method), 98
session_list () (data_organiser method), 98
session_refresh () (data_organiser method), 98
session_switch () (data_organiser method), 99
soxs_disp_solution (class in soxspipe.recipes),
36, 124
soxs_mbias (class in soxspipe.recipes), 12, 129
soxs_mdark (class in soxspipe.recipes), 16, 134
soxs_mflat (class in soxspipe.recipes), 27, 139
soxs_order_centres (class in soxspipe.recipes),
41, 146

(subtract_sky

(reducer

Index

181

soxspipe Documentation, Release v0.10.2

soxs_spatial_solution (class in
soxspipe.recipes), 46, 151
soxs_stare (class in soxspipe.recipes), 156
soxs_straighten (class in soxspipe.recipes), 161
soxspipe.commonutils
module, 87
soxspipe.commonutils.polynomials
module, 88
soxspipe.commonutils.toolkit
module, 89
soxspipe.recipes
module, 88
soxspipe.utKit
module, 90
spectroscopic_image_quality_checks () (in
module soxspipe.commonutils.toolkit), 172
stitch_uv_mflats () (soxs_mflat method), 28, 144
subtract () (subtract_background method), 118
subtract () (subtract_sky method), 123
subtract_background (class in
soxspipe.commonutils), 117
subtract_mean_flux_level ()
(soxs_disp_solution method), 128
subtract_mean_flux_level ()
method), 133
subtract_mean_flux_level ()
method), 138
subtract_mean_flux_level ()
method), 144
subtract_mean_flux_level ()
(soxs_order_centres method), 149
subtract_mean_flux_level ()
(soxs_spatial_solution method), 155
subtract_mean_flux_level ()
method), 160

(soxs_mbias
(soxs_mdark

(soxs_mflat

(soxs_stare

update_fits_keywords () (soxs_mbias method),

133

update_fits_keywords () (soxs_mdark method),
138

update_fits_keywords () (soxs_mflat method),
145

update_fits_keywords () (soxs_order_centres
method), 150
update_fits_keywords ()
method), 155
update_fits_keywords ()
160
update_fits_keywords ()
method), 165

(soxs_spatial_solution
(soxs_stare method),

(soxs_straighten

V

verify_input_frames ()
method), 36, 128
verify_ input_frames () (soxs_mbias method), 12,

(soxs_disp_solution

134

verify_input_frames () (soxs_mdark method),
16, 139

verify_input_frames () (soxs_mflat method), 28,
145

verify_ input_frames () (soxs_order_centres
method), 41, 150

verify_input_frames|()
method), 46, 155

verify_input_frames () (soxs_stare method), 160

(soxs_straighten

(soxs_spatial_solution

verify_ input_frames ()

method), 165

W

write_map_to_file ()
method), 55, 95

(create_dispersion_map

subtract_mean_flux_level () (soxs_straighten write order table to file () (de-
method), 164 tect_continuum method), 103
subtract_sky (class in soxspipe.commonutils), 118 write order table to_file () (de-
symlink_session_assets_to_workspace_root () tect_order_edges method), 106
(data_organiser method), 99
sync_sqgl_table_to_directory () X
(data_organiser method), 100 xsh2soxs () (soxs_disp_solution method), 128
T xsh2soxs () (soxs_mbias method), 134
xsh2soxs () (soxs_mdark method), 139
twoD_disp_map_image_to_dataframe () (in xsh2soxs () (soxs_mflat method), 145
module soxspipe.commonutils.toolkit), 172 xsh2soxs () (soxs_order_centres method), 150
U xsh2soxs () (soxs_spatial_solution method), 155
xsh2soxs () (soxs_stare method), 161
uncompress () (in module soxspipe.commonutils), 173 xsh2soxs () (soxs_straighten method), 165
unpack_order_table () (in module
soxspipe.commonutils.toolkit), 173
update_fits_keywords () (soxs_disp_solution
method), 128
182 Index

	Installation
	How to cite soxspipe
	Quickstart Guide
	Install
	Demo Data
	Preparing the Data-Reduction Workspace
	Reduce the Data

	Logging
	Data Reduction Sessions
	reduce
	A Primer on SOXS Observation Modes
	Recipes
	Standard Calibrations
	soxs_mbias
	soxs_mdark
	soxs_mflat

	Dispersion and Spatial Solutions
	soxs_disp_solution
	soxs_order_centres
	soxs_spatial_solution - PLANNED
	soxs_straighten - PLANNED

	Utilities
	clip_and_stack
	create_dispersion_map
	2D Image Map

	create_noise_map - PLANNED
	detect_continuum
	detect_order_edges – COMPLETED
	detector_lookup
	filenamer
	keyword_lookup
	prepare_frames
	set_of_files
	subtract_background
	detrend - SEMI-COMPLETED

	Files
	Product Files
	Static Calibration Files
	Pinhole Map
	Detector Parameters
	Spectral Format Table

	Intermediate Files
	Master Bias
	Master Dark
	Prepared Frame
	Dispersion Map
	Order Table

	Release Notes
	v0.10.2 - April 23, 2024
	v0.10.1 - April 11, 2024
	v0.10.0 - February 20, 2024
	v0.9.9 - January 24, 2024
	v0.9.8 - January 19, 2024
	v0.9.7 - December 7, 2023
	v0.9.4 - December 5, 2023
	v0.9.2 - November 29, 2023
	v0.9.0 - October 11, 2023
	v0.8.0 - May 18, 2023
	v0.7.2 - March 3, 2023
	v0.7.1 - November 4, 2022
	v0.6.2 - April 13, 2022
	v0.6.1 - April 11, 2022
	v0.6.0 - April 10, 2022
	v0.5.1 - September 29, 2021
	v0.5.0 - June 10, 2021
	v0.4.1 - September 15, 2020
	v0.4.0 - September 3, 2020
	v0.3.1 - August 25, 2020
	v0.3.0 - August 18, 2020
	v0.2.0 - February 27, 2020

	Modules
	commonutils (module)
	recipes (module)
	polynomials (module)
	toolkit (module)
	utKit (module)

	Classes
	create_dispersion_map (class)
	data_organiser (class)
	detect_continuum (class)
	detect_order_edges (class)
	detector_lookup (class)
	flux_calibration (class)
	horne_extraction (class)
	keyword_lookup (class)
	chebyshev_order_wavelength_polynomials (class)
	chebyshev_order_xy_polynomials (class)
	chebyshev_xy_polynomial (class)
	reducer (class)
	response_function (class)
	subtract_background (class)
	subtract_sky (class)
	MaxFilter (class)
	soxs_disp_solution (class)
	soxs_mbias (class)
	soxs_mdark (class)
	soxs_mflat (class)
	soxs_order_centres (class)
	soxs_spatial_solution (class)
	soxs_stare (class)
	soxs_straighten (class)

	Functions
	dispersion_map_to_pixel_arrays (function)
	filenamer (function)
	getpackagepath (function)
	add_recipe_logger (function)
	create_dispersion_solution_grid_lines_for_plot (function)
	cut_image_slice (function)
	generic_quality_checks (function)
	get_calibration_lamp (function)
	get_calibrations_path (function)
	predict_product_path (function)
	quicklook_image (function)
	read_spectral_format (function)
	spectroscopic_image_quality_checks (function)
	twoD_disp_map_image_to_dataframe (function)
	unpack_order_table (function)
	uncompress (function)

	A-Z Index

	Acknowledgements
	Python Module Index
	Index

